NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models
- URL: http://arxiv.org/abs/2410.01870v2
- Date: Fri, 21 Feb 2025 16:07:00 GMT
- Title: NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models
- Authors: Yibo Zhong, Haoxiang Jiang, Lincan Li, Ryumei Nakada, Tianci Liu, Linjun Zhang, Huaxiu Yao, Haoyu Wang,
- Abstract summary: Fine-tuning pre-trained models often yields state-of-the-art performance but is computationally expensive when updating all parameters.<n>We propose NEAT, a nonlinear PEFT approach that employs a lightweight neural network to learn a nonlinear transformation of the pre-trained weights.<n>Our theoretical analysis shows that NEAT achieves greater efficiency than LoRA while maintaining equivalent expressivity.
- Score: 26.808251361020066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning pre-trained models often yields state-of-the-art performance but is computationally expensive when updating all parameters. Parameter-efficient fine-tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), address this by freezing pre-trained weights and introducing low-rank matrices. However, because LoRA relies on low-rank decomposition, it struggles to capture complex nonlinear dynamics and optimal optimization trajectories, resulting in a performance gap relative to full fine-tuning and inefficient parameter utilization. To overcome these issues, we propose NEAT, a nonlinear PEFT approach that employs a lightweight neural network to learn a nonlinear transformation of the pre-trained weights, thereby better approximating cumulative weight updates. Our theoretical analysis shows that NEAT achieves greater efficiency than LoRA while maintaining equivalent expressivity. Extensive experiments on four benchmarks and over twenty datasets demonstrate that NEAT significantly outperforms state-of-the-art baselines in both vision and text tasks.
Related papers
- VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models [0.8875650122536799]
We propose VectorFit, an effective and easily deployable approach that adaptively trains the singular vectors and biases of pre-trained weight matrices.
We demonstrate that the utilization of structural and transformational characteristics of pre-trained weights enables high-rank updates comparable to those of full fine-tuning.
arXiv Detail & Related papers (2025-03-25T10:36:27Z) - EDoRA: Efficient Weight-Decomposed Low-Rank Adaptation via Singular Value Decomposition [2.5269004336032186]
Efficient Weight-Decomposed Low-Rank Adaptation (EDoRA) is a novel PEFT method that decomposes pre-trained weights into magnitude and directional components.
EDoRA achieves competitive or superior performance compared to state-of-the-art methods, such as LoRA and DoRA.
arXiv Detail & Related papers (2025-01-21T11:42:09Z) - IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
We propose IntLoRA, to push the efficiency limits by using integer type (INT) low-rank parameters to adapt the quantized diffusion models.
IntLoRA offers three key advantages: (i) for fine-tuning, the pre-trained weights are quantized, reducing memory usage; (ii) for storage, both pre-trained and low-rank weights are in INT which consumes less disk space; (iii) for inference, IntLoRA weights can be naturally merged into quantized pre-trained weights through efficient integer multiplication or bit-shifting.
arXiv Detail & Related papers (2024-10-29T05:50:17Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
In this work, we investigate the importance of parameters in pre-trained diffusion models.
We propose a novel model fine-tuning method to make full use of these ineffective parameters.
Our method enhances the generative capabilities of pre-trained models in downstream applications.
arXiv Detail & Related papers (2024-09-10T16:44:47Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Compressible Dynamics in Deep Overparameterized Low-Rank Learning & Adaptation [12.07880147193174]
We show that by leveraging the inherent low-dimensional structures of data and compressible dynamics within the model parameters, we can reap the benefits of over parameterization without the computational burdens.
We demonstrate the effectiveness of this approach for deep low-rank matrix completion as well as fine-tuning language models.
arXiv Detail & Related papers (2024-06-06T14:29:49Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
We propose a.
sparse-efficient Sparse Training (PST) method to reduce the number of trainable parameters during sparse-aware training.
Experiments with diverse networks (i.e., BERT, RoBERTa and GPT-2) demonstrate PST performs on par or better than previous sparsity methods.
arXiv Detail & Related papers (2022-05-23T02:43:45Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
We present the first method for linearizing a pre-trained model that achieves comparable performance to non-linear fine-tuning.
LQF consists of simple modifications to the architecture, loss function and optimization typically used for classification.
arXiv Detail & Related papers (2020-12-21T06:40:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.