Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool
- URL: http://arxiv.org/abs/2409.15491v1
- Date: Mon, 23 Sep 2024 19:22:06 GMT
- Title: Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool
- Authors: Ziyu Su, Yongxin Guo, Robert Wesolowski, Gary Tozbikian, Nathaniel S. O'Connell, M. Khalid Khan Niazi, Metin N. Gurcan,
- Abstract summary: Deep-BCR-Auto is a deep learning-based computational pathology approach that predicts breast cancer recurrence risk.
Our methodology was validated on two independent cohorts.
Deep-BCR-Auto demonstrated robust performance in stratifying patients into low- and high-recurrence risk categories.
- Score: 0.40205899806543505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate recurrence risk stratification is crucial for optimizing treatment plans for breast cancer patients. Current prognostic tools like Oncotype DX (ODX) offer valuable genomic insights for HR+/HER2- patients but are limited by cost and accessibility, particularly in underserved populations. In this study, we present Deep-BCR-Auto, a deep learning-based computational pathology approach that predicts breast cancer recurrence risk from routine H&E-stained whole slide images (WSIs). Our methodology was validated on two independent cohorts: the TCGA-BRCA dataset and an in-house dataset from The Ohio State University (OSU). Deep-BCR-Auto demonstrated robust performance in stratifying patients into low- and high-recurrence risk categories. On the TCGA-BRCA dataset, the model achieved an area under the receiver operating characteristic curve (AUROC) of 0.827, significantly outperforming existing weakly supervised models (p=0.041). In the independent OSU dataset, Deep-BCR-Auto maintained strong generalizability, achieving an AUROC of 0.832, along with 82.0% accuracy, 85.0% specificity, and 67.7% sensitivity. These findings highlight the potential of computational pathology as a cost-effective alternative for recurrence risk assessment, broadening access to personalized treatment strategies. This study underscores the clinical utility of integrating deep learning-based computational pathology into routine pathological assessment for breast cancer prognosis across diverse clinical settings.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology.
Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses.
We introduce HistoROI, a robust yet lightweight deep learning-based classifier to segregate WSI into six broad tissue regions.
arXiv Detail & Related papers (2024-09-29T07:08:45Z) - BioFusionNet: Deep Learning-Based Survival Risk Stratification in ER+ Breast Cancer Through Multifeature and Multimodal Data Fusion [16.83901927767791]
We present BioFusionNet, a deep learning framework that fuses image-derived features with genetic and clinical data to obtain a holistic profile.
Our model achieves a mean concordance index of 0.77 and a time-dependent area under the curve of 0.84, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2024-02-16T14:19:33Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - A Robust Deep Learning Method with Uncertainty Estimation for the
Pathological Classification of Renal Cell Carcinoma based on CT Images [10.860934781772098]
The developed deep learning model demonstrated robust performance in predicting the pathological subtypes of RCC.
The incorporated uncertainty emphasized the importance of understanding model confidence, which is crucial for assisting clinical decision-making.
arXiv Detail & Related papers (2023-11-01T15:07:39Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
The deep learning model was developed with 1868 eligible NCCT scans with non-traumatic ICH collected between January 2011 and April 2018.
The model's diagnostic performance was compared with clinicians's performance.
The clinicians achieve significant improvements in the sensitivity, specificity, and accuracy of diagnoses of certain hemorrhage etiologies with proposed system augmentation.
arXiv Detail & Related papers (2023-02-02T08:45:17Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis [1.1470070927586016]
We used interpretability techniques, such as the Global Surrogate (GS) method, the Individual Expectation (ICE) plots and the Conditional Shapley values (SV)
The best performance for breast cancer diagnosis was achieved by the proposed ENN (96.6% accuracy and 0.96 area under the ROC curve)
arXiv Detail & Related papers (2022-02-04T13:41:30Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.