Learning Diverse Robot Striking Motions with Diffusion Models and Kinematically Constrained Gradient Guidance
- URL: http://arxiv.org/abs/2409.15528v1
- Date: Mon, 23 Sep 2024 20:26:51 GMT
- Title: Learning Diverse Robot Striking Motions with Diffusion Models and Kinematically Constrained Gradient Guidance
- Authors: Kin Man Lee, Sean Ye, Qingyu Xiao, Zixuan Wu, Zulfiqar Zaidi, David B. D'Ambrosio, Pannag R. Sanketi, Matthew Gombolay,
- Abstract summary: We develop a novel diffusion modeling approach that is offline, constraint-guided, and expressive of diverse agile behaviors.
We demonstrate the effectiveness of our approach for time-critical robotic tasks by evaluating KCGG in two challenging domains: simulated air hockey and real table tennis.
- Score: 0.3613661942047476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in robot learning have enabled robots to generate skills for a variety of tasks. Yet, robot learning is typically sample inefficient, struggles to learn from data sources exhibiting varied behaviors, and does not naturally incorporate constraints. These properties are critical for fast, agile tasks such as playing table tennis. Modern techniques for learning from demonstration improve sample efficiency and scale to diverse data, but are rarely evaluated on agile tasks. In the case of reinforcement learning, achieving good performance requires training on high-fidelity simulators. To overcome these limitations, we develop a novel diffusion modeling approach that is offline, constraint-guided, and expressive of diverse agile behaviors. The key to our approach is a kinematic constraint gradient guidance (KCGG) technique that computes gradients through both the forward kinematics of the robot arm and the diffusion model to direct the sampling process. KCGG minimizes the cost of violating constraints while simultaneously keeping the sampled trajectory in-distribution of the training data. We demonstrate the effectiveness of our approach for time-critical robotic tasks by evaluating KCGG in two challenging domains: simulated air hockey and real table tennis. In simulated air hockey, we achieved a 25.4% increase in block rate, while in table tennis, we saw a 17.3% increase in success rate compared to imitation learning baselines.
Related papers
- Multi-Objective Algorithms for Learning Open-Ended Robotic Problems [1.0124625066746598]
Quadrupedal locomotion is a complex, open-ended problem vital to expanding autonomous vehicle reach.
Traditional reinforcement learning approaches often fall short due to training instability and sample inefficiency.
We propose a novel method leveraging multi-objective evolutionary algorithms as an automatic curriculum learning mechanism.
arXiv Detail & Related papers (2024-11-11T16:26:42Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) is a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL.
On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 20K online fine-tuning steps.
arXiv Detail & Related papers (2024-07-14T21:41:29Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
Current state-of-the-art action representations in robotics lack proper effect-driven learning of the robot's actions.
We propose an unsupervised algorithm to discretize a continuous motion space and generate "action prototypes"
We evaluate our method on a simulated stair-climbing reinforcement learning task.
arXiv Detail & Related papers (2024-04-03T13:28:52Z) - Learning Quadruped Locomotion Using Differentiable Simulation [31.80380408663424]
Differentiable simulation promises fast convergence and stable training.
This work proposes a new differentiable simulation framework to overcome these challenges.
Our framework enables learning quadruped walking in simulation in minutes without parallelization.
arXiv Detail & Related papers (2024-03-21T22:18:59Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Obstacle Avoidance for Robotic Manipulator in Joint Space via Improved
Proximal Policy Optimization [6.067589886362815]
In this paper, we train a deep neural network via an improved Proximal Policy Optimization (PPO) algorithm to map from task space to joint space for a 6-DoF manipulator.
Since training such a task in real-robot is time-consuming and strenuous, we develop a simulation environment to train the model.
Experimental results showed that using our method, the robot was capable of tracking a single target or reaching multiple targets in unstructured environments.
arXiv Detail & Related papers (2022-10-03T10:21:57Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Revisiting the Adversarial Robustness-Accuracy Tradeoff in Robot
Learning [121.9708998627352]
Recent work has shown that, in practical robot learning applications, the effects of adversarial training do not pose a fair trade-off.
This work revisits the robustness-accuracy trade-off in robot learning by analyzing if recent advances in robust training methods and theory can make adversarial training suitable for real-world robot applications.
arXiv Detail & Related papers (2022-04-15T08:12:15Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
We propose a novel unsupervised domain adaptation framework which can simultaneously transfer multi-modality knowledge, i.e., both kinematic and visual data, from simulator to real robot.
It remedies the domain gap with enhanced transferable features by using temporal cues in videos, and inherent correlations in multi-modal towards recognizing gesture.
Results show that our approach recovers the performance with great improvement gains, up to 12.91% in ACC and 20.16% in F1score without using any annotations in real robot.
arXiv Detail & Related papers (2021-03-06T09:10:03Z) - Learning to Play Table Tennis From Scratch using Muscular Robots [34.34824536814943]
This work is the first to (a) fail-safe learn of a safety-critical dynamic task using anthropomorphic robot arms, (b) learn a precision-demanding problem with a PAM-driven system, and (c) train robots to play table tennis without real balls.
Videos and datasets are available at muscularTT.embodied.ml.
arXiv Detail & Related papers (2020-06-10T16:43:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.