論文の概要: Critic Loss for Image Classification
- arxiv url: http://arxiv.org/abs/2409.15565v1
- Date: Mon, 23 Sep 2024 21:41:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 12:23:41.919673
- Title: Critic Loss for Image Classification
- Title(参考訳): 画像分類における批判的損失
- Authors: Brendan Hogan Rappazzo, Aaron Ferber, Carla Gomes,
- Abstract要約: CrtClは、ジェネレータ批判フレームワークにおける画像分類トレーニングを定式化する。
CrtClは、クロスエントロピー損失による負の副作用を軽減し、精度の学習損失法である。
低ラベルデータ構造におけるCrtClの有効性を,アクティブラーニングの文脈で検討した。
- 参考スコア(独自算出の注目度): 0.6437284704257459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural network classifiers achieve remarkable performance across a variety of tasks; however, they frequently exhibit overconfidence in their predictions due to the cross-entropy loss. Inspired by this problem, we propose the \textbf{Cr}i\textbf{t}ic Loss for Image \textbf{Cl}assification (CrtCl, pronounced Critical). CrtCl formulates image classification training in a generator-critic framework, with a base classifier acting as a generator, and a correctness critic imposing a loss on the classifier. The base classifier, acting as the generator, given images, generates the probability distribution over classes and intermediate embeddings. The critic model, given the image, intermediate embeddings, and output predictions of the base model, predicts the probability that the base model has produced the correct classification, which then can be back propagated as a self supervision signal. Notably, the critic does not use the label as input, meaning that the critic can train the base model on both labeled and unlabeled data in semi-supervised learning settings. CrtCl represents a learned loss method for accuracy, alleviating the negative side effects of using cross-entropy loss. Additionally, CrtCl provides a powerful way to select data to be labeled in an active learning setting, by estimating the classification ability of the base model on unlabeled data. We study the effectiveness of CrtCl in low-labeled data regimes, and in the context of active learning. In classification, we find that CrtCl, compared to recent baselines, increases classifier generalization and calibration with various amounts of labeled data. In active learning, we show our method outperforms baselines in accuracy and calibration. We observe consistent results across three image classification datasets.
- Abstract(参考訳): 現代のニューラルネットワーク分類器は、様々なタスクで顕著なパフォーマンスを達成するが、交叉エントロピー損失による予測に自信を欠くことがしばしばある。
この問題に触発されて、画像の「textbf{Cr}i\textbf{t}ic Loss for Image \textbf{Cl}assification (CrtCl) を提案する。
CrtClは、ジェネレータクリティカルなフレームワークで画像分類訓練を定式化し、ベース分類器がジェネレータとして機能し、その分類器に損失を与える正当性を批判する。
生成元として機能する基底分類器は、与えられた画像に対して、クラスと中間埋め込みの確率分布を生成する。
批評家モデルは、ベースモデルのイメージ、中間埋め込み、出力予測を考慮し、ベースモデルが正しい分類を作成した確率を予測し、自己監督信号として伝播することができる。
特に、批評家はラベルを入力として使用しないため、半教師付き学習環境でラベル付きデータとラベルなしデータの両方でベースモデルをトレーニングすることができる。
CrtClは、クロスエントロピー損失による負の副作用を軽減し、精度の学習損失法である。
さらに、CrtClは、ラベルなしデータに基づいてベースモデルの分類能力を推定することにより、アクティブな学習環境でラベル付けされるデータを選択する強力な方法を提供する。
低ラベルデータ構造におけるCrtClの有効性を,アクティブラーニングの文脈で検討した。
分類において、CrtClは最近のベースラインと比較して、様々なラベル付きデータを用いて分類器の一般化と校正を増加させている。
能動的学習において,本手法は精度,キャリブレーションにおいて,ベースラインよりも優れていることを示す。
3つの画像分類データセットに対して一貫した結果が得られた。
関連論文リスト
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Model Calibration in Dense Classification with Adaptive Label
Perturbation [44.62722402349157]
既存の密接な二分分類モデルは、過信される傾向がある。
本稿では,各トレーニング画像に対する独自のラベル摂動レベルを学習する適応ラベル摂動(ASLP)を提案する。
ASLPは、分布内および分布外の両方のデータに基づいて、密度の高い二分分類モデルの校正度を著しく改善することができる。
論文 参考訳(メタデータ) (2023-07-25T14:40:11Z) - End-to-End Supervised Multilabel Contrastive Learning [38.26579519598804]
マルチラベル表現学習は、オブジェクトカテゴリ間のラベル依存やデータ関連の問題に関連付けられる難しい問題として認識されている。
近年の進歩は、モデルとデータ中心の視点からこれらの課題に対処している。
KMCLと呼ばれる新しいエンドツーエンドのトレーニングフレームワークを提案し、モデルとデータ中心の設計の欠点に対処する。
論文 参考訳(メタデータ) (2023-07-08T12:46:57Z) - Text-to-Image Diffusion Models are Zero-Shot Classifiers [8.26990105697146]
ゼロショット分類器として評価する手法を提案し,テキスト・画像拡散モデルについて検討した。
本手法を安定拡散およびイメージnに適用し,モデル知識のきめ細かい面を探索する。
彼らは幅広いゼロショット画像分類データセットでCLIPと競合する。
論文 参考訳(メタデータ) (2023-03-27T14:15:17Z) - Prediction Calibration for Generalized Few-shot Semantic Segmentation [101.69940565204816]
汎用Few-shot Semantic (GFSS) は、各画像ピクセルを、豊富なトレーニング例を持つベースクラスか、クラスごとにわずかに(例: 1-5)のトレーニングイメージを持つ新しいクラスのいずれかに分割することを目的としている。
我々は、融合したマルチレベル機能を用いて、分類器の最終予測をガイドするクロスアテンションモジュールを構築する。
私たちのPCNは、最先端の代替品よりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-10-15T13:30:12Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
フル参照(FR)画像品質評価(IQA)は、その知覚的差異をプリズム品質基準で測定することにより、歪み画像の視覚的品質を評価する。
ラベルなしデータは、画像劣化または復元プロセスから容易に収集することができ、ラベルなしのトレーニングデータを利用してFR-IQA性能を高めることを奨励する。
本稿では, 半教師付き, 正の未ラベル学習(PU)を用いて, ラベルなしデータを活用し, オフレーヤの悪影響を軽減することを提案する。
論文 参考訳(メタデータ) (2022-04-19T09:10:06Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Evaluating and Mitigating Bias in Image Classifiers: A Causal
Perspective Using Counterfactuals [27.539001365348906]
本稿では、逆学習推論(ALI)の改良版に構造因果モデル(SCM)を組み込むことにより、逆ファクトアルを生成する方法を提案する。
本稿では,事前学習された機械学習分類器の説明方法を示し,そのバイアスを評価し,そのバイアスを正則化器を用いて緩和する方法について述べる。
論文 参考訳(メタデータ) (2020-09-17T13:19:31Z) - Adaptive Label Smoothing [1.3198689566654107]
本稿では,学習中の目的意識とラベルの平滑化を併用した新しい分類手法を提案する。
適応ラベルスムーシングを用いて訓練されたCNNが、予測に過信される可能性がはるかに低いことを示すために、ImageNetを用いた広範な結果を示す。
論文 参考訳(メタデータ) (2020-09-14T13:37:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。