Latent Temporal Flows for Multivariate Analysis of Wearables Data
- URL: http://arxiv.org/abs/2210.07475v1
- Date: Fri, 14 Oct 2022 02:54:34 GMT
- Title: Latent Temporal Flows for Multivariate Analysis of Wearables Data
- Authors: Magda Amiridi, Gregory Darnell, Sean Jewell
- Abstract summary: We introduce Latent Temporal Flows, a method for multivariate time-series modeling tailored to this setting.
We show that the proposed method consistently outperforms the state-of-the-art in multi-step forecasting benchmarks.
- Score: 0.9990687944474738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Increased use of sensor signals from wearable devices as rich sources of
physiological data has sparked growing interest in developing health monitoring
systems to identify changes in an individual's health profile. Indeed, machine
learning models for sensor signals have enabled a diverse range of healthcare
related applications including early detection of abnormalities, fertility
tracking, and adverse drug effect prediction. However, these models can fail to
account for the dependent high-dimensional nature of the underlying sensor
signals. In this paper, we introduce Latent Temporal Flows, a method for
multivariate time-series modeling tailored to this setting. We assume that a
set of sequences is generated from a multivariate probabilistic model of an
unobserved time-varying low-dimensional latent vector. Latent Temporal Flows
simultaneously recovers a transformation of the observed sequences into
lower-dimensional latent representations via deep autoencoder mappings, and
estimates a temporally-conditioned probabilistic model via normalizing flows.
Using data from the Apple Heart and Movement Study (AH&MS), we illustrate
promising forecasting performance on these challenging signals. Additionally,
by analyzing two and three dimensional representations learned by our model, we
show that we can identify participants' $\text{VO}_2\text{max}$, a main
indicator and summary of cardio-respiratory fitness, using only lower-level
signals. Finally, we show that the proposed method consistently outperforms the
state-of-the-art in multi-step forecasting benchmarks (achieving at least a
$10\%$ performance improvement) on several real-world datasets, while enjoying
increased computational efficiency.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDo is an adaptive feature learning technique for exploring visual patterns in multi-track sequential data.
Our algorithm features sub-linear training and inference time.
We demonstrate superiority of PSEUDo in terms of efficiency, accuracy, and steerability.
arXiv Detail & Related papers (2021-04-30T13:00:44Z) - Deep Switching Auto-Regressive Factorization:Application to Time Series
Forecasting [16.934920617960085]
DSARF approximates high dimensional data by a product variables between time dependent weights and spatially dependent factors.
DSARF is different from the state-of-the-art techniques in that it parameterizes the weights in terms of a deep switching vector auto-regressive factorization.
Our experiments attest the superior performance of DSARF in terms of long- and short-term prediction error, when compared with the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-10T20:15:59Z) - Deep ConvLSTM with self-attention for human activity decoding using
wearables [0.0]
We propose a deep neural network architecture that captures features of multiple sensor time-series data but also selects important time points.
We show the validity of the proposed approach across different data sampling strategies and demonstrate that the self-attention mechanism gave a significant improvement.
The proposed methods open avenues for better decoding of human activity from multiple body sensors over extended periods time.
arXiv Detail & Related papers (2020-05-02T04:30:31Z) - Human Activity Recognition from Wearable Sensor Data Using
Self-Attention [2.9023633922848586]
We present a self-attention based neural network model for activity recognition from body-worn sensor data.
We performed experiments on four popular publicly available HAR datasets: PAMAP2, Opportunity, Skoda and USC-HAD.
Our model achieve significant performance improvement over recent state-of-the-art models in both benchmark test subjects and Leave-one-out-subject evaluation.
arXiv Detail & Related papers (2020-03-17T14:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.