The First Early Evidence of the Use of Browser Fingerprinting for Online Tracking
- URL: http://arxiv.org/abs/2409.15656v2
- Date: Wed, 19 Feb 2025 12:34:29 GMT
- Title: The First Early Evidence of the Use of Browser Fingerprinting for Online Tracking
- Authors: Zengrui Liu, Jimmy Dani, Yinzhi Cao, Shujiang Wu, Nitesh Saxena,
- Abstract summary: It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising.
This paper introduces FPTrace, a framework to assess fingerprinting-based user tracking by analyzing ad changes from browser fingerprinting adjustments.
- Score: 10.98528003128308
- License:
- Abstract: While advertising has become commonplace in today's online interactions, there is a notable dearth of research investigating the extent to which browser fingerprinting is harnessed for user tracking and targeted advertising. Prior studies only measured whether fingerprinting-related scripts are being run on the websites but that in itself does not necessarily mean that fingerprinting is being used for the privacy-invasive purpose of online tracking because fingerprinting might be deployed for the defensive purposes of bot/fraud detection and user authentication. It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising. This paper introduces ``FPTrace'' (fingerprinting-based tracking assessment and comprehensive evaluation framework), a framework to assess fingerprinting-based user tracking by analyzing ad changes from browser fingerprinting adjustments. Using FPTrace, we emulate user interactions, capture ad bid data, and monitor HTTP traffic. Our large-scale study reveals strong evidence of browser fingerprinting for ad tracking and targeting, shown by bid value disparities and reduced HTTP records after fingerprinting changes. We also show fingerprinting can bypass GDPR/CCPA opt-outs, enabling privacy-invasive tracking. In conclusion, our research unveils the widespread employment of browser fingerprinting in online advertising, prompting critical considerations regarding user privacy and data security within the digital advertising landscape.
Related papers
- Browser Fingerprint Detection and Anti-Tracking [0.0]
Digital fingerprints pose a significant threat to the privacy and security of ordinary users.
In this paper, we investigate the effectiveness of current anti-tracking methods against digital fingerprints and design a browser extension that can effectively resist digital fingerprints.
arXiv Detail & Related papers (2025-02-20T07:23:22Z) - Beyond the Crawl: Unmasking Browser Fingerprinting in Real User Interactions [9.495142718502072]
Browser fingerprinting is a pervasive online tracking technique used increasingly often for profiling and targeted advertising.
Prior research heavily relied on automated web crawls, which inherently struggle to replicate the nuances of human-computer interactions.
This paper presents a user study involving 30 participants over 10 weeks, capturing telemetry data from real browsing sessions across 3,000 top-ranked websites.
arXiv Detail & Related papers (2025-02-03T18:43:34Z) - Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
Browser fingerprinting is a growing technique for identifying and tracking users online without traditional methods like cookies.
This paper gives an overview by examining the various fingerprinting techniques and analyzes the entropy and uniqueness of the collected data.
arXiv Detail & Related papers (2024-11-18T20:32:31Z) - How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - Characterizing Browser Fingerprinting and its Mitigations [0.0]
This work explores one of these tracking techniques: browser fingerprinting.
We detail how browser fingerprinting works, how prevalent it is, and what defenses can mitigate it.
arXiv Detail & Related papers (2023-10-12T20:31:24Z) - Keep your Identity Small: Privacy-preserving Client-side Fingerprinting [0.0]
Device fingerprinting is a widely used technique that allows a third party to identify a particular device.
One of its most widespread uses is to identify users visiting different websites and thus build their browsing history.
This constitutes a specific type of web tracking that poses a threat to users' privacy.
We propose Privacy-preserving Client-side Fingerprinting (PCF), a new method that allows device fingerprinting on the web, while blocks the possibility of performing web tracking.
arXiv Detail & Related papers (2023-09-14T09:45:29Z) - Protecting User Privacy in Online Settings via Supervised Learning [69.38374877559423]
We design an intelligent approach to online privacy protection that leverages supervised learning.
By detecting and blocking data collection that might infringe on a user's privacy, we can restore a degree of digital privacy to the user.
arXiv Detail & Related papers (2023-04-06T05:20:16Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.