論文の概要: Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing
- arxiv url: http://arxiv.org/abs/2409.15735v3
- Date: Fri, 22 Nov 2024 09:44:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:00:52.564322
- Title: Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing
- Title(参考訳): LLMによる静的アプリケーションセキュリティテストに基づくサイバーセキュリティ脆弱性スキャンの強化
- Authors: Mete Keltek, Rong Hu, Mohammadreza Fani Sani, Ziyue Li,
- Abstract要約: 大規模言語モデル(LLM)は、強力なコード解析機能を示しているが、静的トレーニングデータとプライバシリスクは、その有効性を制限している。
LSASTは,LSLMをSASTスキャナと統合し,脆弱性検出を強化する手法である。
静的な脆弱性分析のための新しいベンチマークを設定し、堅牢でプライバシを重視したソリューションを提供しました。
- 参考スコア(独自算出の注目度): 5.644999288757871
- License:
- Abstract: The current cybersecurity landscape is increasingly complex, with traditional Static Application Security Testing (SAST) tools struggling to capture complex and emerging vulnerabilities due to their reliance on rule-based matching. Meanwhile, Large Language Models (LLMs) have demonstrated powerful code analysis capabilities, but their static training data and privacy risks limit their effectiveness. To overcome the limitations of both approaches, we propose LSAST, a novel approach that integrates LLMs with SAST scanners to enhance vulnerability detection. LSAST leverages a locally hostable LLM, combined with a state-of-the-art knowledge retrieval system, to provide up-to-date vulnerability insights without compromising data privacy. We set a new benchmark for static vulnerability analysis, offering a robust, privacy-conscious solution that bridges the gap between traditional scanners and advanced AI-driven analysis. Our evaluation demonstrates that incorporating SAST results into LLM analysis significantly improves detection accuracy, identifying vulnerabilities missed by conventional methods.
- Abstract(参考訳): 現在のサイバーセキュリティの状況はますます複雑化しており、従来の静的アプリケーションセキュリティテスト(SAST)ツールは、ルールベースのマッチングに依存しているため、複雑で出現する脆弱性を捉えるのに苦労している。
一方、LLM(Large Language Models)は、強力なコード解析機能を示しているが、静的トレーニングデータとプライバシリスクは、その有効性を制限している。
両手法の限界を克服するために,LSASTを提案する。LSASTは,LSLMをSASTスキャナと統合し,脆弱性検出を強化する手法である。
LSASTは、ローカルにホスト可能なLSMと最先端の知識検索システムを組み合わせて、データのプライバシを損なうことなく、最新の脆弱性洞察を提供する。
私たちは、従来のスキャナと高度なAI駆動分析のギャップを埋める、堅牢でプライバシを重視したソリューションを提供する、静的脆弱性分析のための新しいベンチマークを設定しました。
評価の結果,LSM解析にSASTを組み込むことで検出精度が向上し,従来の手法では欠落していた脆弱性が同定された。
関連論文リスト
- LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
大規模言語モデル(LLM)は、ソフトウェア脆弱性検出のためのトランスフォーメーションツールとして登場している。
本稿では,脆弱性検出におけるLSMの詳細な調査を行う。
言語間の脆弱性検出、マルチモーダルデータ統合、リポジトリレベルの分析といった課題に対処する。
論文 参考訳(メタデータ) (2025-02-10T21:33:38Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - PenHeal: A Two-Stage LLM Framework for Automated Pentesting and Optimal Remediation [18.432274815853116]
PenHealは2段階のLSMベースのフレームワークで、自律的に脆弱性を特定してセキュリティを確保する。
本稿では,LLMベースの2段階フレームワークであるPenHealについて紹介する。
論文 参考訳(メタデータ) (2024-07-25T05:42:14Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
本稿では,暗号誤用の検出において,大規模言語モデルを評価するための体系的評価フレームワークを提案する。
11,940個のLCM生成レポートを詳細に分析したところ、LSMに固有の不安定性は、報告の半数以上が偽陽性になる可能性があることがわかった。
最適化されたアプローチは、従来の手法を超え、確立されたベンチマークでこれまで知られていなかった誤用を明らかにすることで、90%近い顕著な検出率を達成する。
論文 参考訳(メタデータ) (2024-07-23T15:31:26Z) - Comparison of Static Application Security Testing Tools and Large Language Models for Repo-level Vulnerability Detection [11.13802281700894]
静的アプリケーションセキュリティテスト(SAST)は通常、セキュリティ脆弱性のソースコードをスキャンするために使用される。
ディープラーニング(DL)ベースの手法は、ソフトウェア脆弱性検出の可能性を実証している。
本稿では,ソフトウェア脆弱性を検出するために,15種類のSASTツールと12種類の最先端のオープンソースLLMを比較した。
論文 参考訳(メタデータ) (2024-07-23T07:21:14Z) - LLM-Assisted Static Analysis for Detecting Security Vulnerabilities [14.188864624736938]
大規模な言語モデル(LLM)は印象的なコード生成機能を示しているが、そのような脆弱性を検出するためにコードに対して複雑な推論を行うことはできない。
我々は,LLMと静的解析を体系的に組み合わせ,セキュリティ脆弱性検出のための全体リポジトリ推論を行うニューロシンボリックアプローチであるIRISを提案する。
論文 参考訳(メタデータ) (2024-05-27T14:53:35Z) - The Art of Defending: A Systematic Evaluation and Analysis of LLM
Defense Strategies on Safety and Over-Defensiveness [56.174255970895466]
大規模言語モデル(LLM)は、自然言語処理アプリケーションにおいて、ますます重要な役割を担っている。
本稿では,SODE(Safety and Over-Defensiveness Evaluation)ベンチマークを提案する。
論文 参考訳(メタデータ) (2023-12-30T17:37:06Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
我々は,このような脆弱性のリスクを評価するために,BIPIAと呼ばれる間接的インジェクション攻撃のための最初のベンチマークを導入した。
我々の分析では、LLMが情報コンテキストと動作可能な命令を区別できないことと、外部コンテンツ内での命令の実行を回避できないことの2つの主要な要因を同定した。
ブラックボックスとホワイトボックスという2つの新しい防御機構と、これらの脆弱性に対処するための明確なリマインダーを提案する。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
包括的な脆弱性ベンチマークであるVulBenchを紹介します。
このベンチマークは、幅広いCTF課題と実世界のアプリケーションから高品質なデータを集約する。
いくつかのLSMは、脆弱性検出における従来のディープラーニングアプローチよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-21T08:20:39Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。