Deep-learning real-time phase retrieval of imperfect diffraction patterns from X-ray free-electron lasers
- URL: http://arxiv.org/abs/2409.15784v1
- Date: Tue, 24 Sep 2024 06:28:25 GMT
- Title: Deep-learning real-time phase retrieval of imperfect diffraction patterns from X-ray free-electron lasers
- Authors: Sung Yun Lee, Do Hyung Cho, Chulho Jung, Daeho Sung, Daewoong Nam, Sangsoo Kim, Changyong Song,
- Abstract summary: We introduce a new deep-learning-based phase retrieval method for imperfect diffraction data.
This method provides robust phase retrieval for simulated data and performs well on weak-signal single-pulse diffraction data from X-ray free-electron lasers.
It significantly reduces data processing time, facilitating real-time image reconstructions that are crucial for high-repetition-rate data acquisition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning is attracting surging interest across nearly all scientific areas by enabling the analysis of large datasets and the extraction of scientific information from incomplete data. Data-driven science is rapidly growing, especially in X-ray methodologies, where advanced light sources and detection technologies accumulate vast amounts of data that exceed meticulous human inspection capabilities. Despite the increasing demands, the full application of machine learning has been hindered by the need for data-specific optimizations. In this study, we introduce a new deep-learning-based phase retrieval method for imperfect diffraction data. This method provides robust phase retrieval for simulated data and performs well on weak-signal single-pulse diffraction data from X-ray free-electron lasers. Moreover, the method significantly reduces data processing time, facilitating real-time image reconstructions that are crucial for high-repetition-rate data acquisition. Thus, this approach offers a reliable solution to the phase problem and is expected to be widely adopted across various research areas.
Related papers
- Imitation Learning Inputting Image Feature to Each Layer of Neural
Network [1.6574413179773757]
Imitation learning enables robots to learn and replicate human behavior from training data.
Recent advances in machine learning enable end-to-end learning approaches that directly process high-dimensional observation data, such as images.
This paper presents a useful method to address this challenge, which amplifies the influence of data with a relatively low correlation to the output.
arXiv Detail & Related papers (2024-01-18T02:44:18Z) - Rapid detection of rare events from in situ X-ray diffraction data using
machine learning [3.793863205903028]
High-energy X-ray diffraction methods can non-destructively map the 3D microstructure and associated attributes of metallic polycrystalline engineering materials.
These methods are often combined with external stimuli such as thermo-mechanical loading to take snapshots over time of the evolving microstructure and attributes.
Here we present a fully automated technique capable of rapidly detecting the onset of plasticity in high-energy X-ray microscopy data.
arXiv Detail & Related papers (2023-12-07T02:14:39Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Exploring Supervised Machine Learning for Multi-Phase Identification and
Quantification from Powder X-Ray Diffraction Spectra [1.0660480034605242]
Powder X-ray diffraction analysis is a critical component of materials characterization methodologies.
Deep learning has become a prime focus for predicting crystallographic parameters and features from X-ray spectra.
Here, we are interested in conventional supervised learning algorithms in lieu of deep learning for multi-label crystalline phase identification.
arXiv Detail & Related papers (2022-11-16T00:36:13Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - TranAD: Deep Transformer Networks for Anomaly Detection in Multivariate
Time Series Data [13.864161788250856]
TranAD is a deep transformer network based anomaly detection and diagnosis model.
It uses attention-based sequence encoders to swiftly perform inference with the knowledge of the broader temporal trends in the data.
TranAD can outperform state-of-the-art baseline methods in detection and diagnosis performance with data and time-efficient training.
arXiv Detail & Related papers (2022-01-18T19:41:29Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - The Imaginative Generative Adversarial Network: Automatic Data
Augmentation for Dynamic Skeleton-Based Hand Gesture and Human Action
Recognition [27.795763107984286]
We present a novel automatic data augmentation model, which approximates the distribution of the input data and samples new data from this distribution.
Our results show that the augmentation strategy is fast to train and can improve classification accuracy for both neural networks and state-of-the-art methods.
arXiv Detail & Related papers (2021-05-27T11:07:09Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Unsupervised machine learning of topological phase transitions from
experimental data [52.77024349608834]
We apply unsupervised machine learning techniques to experimental data from ultracold atoms.
We obtain the topological phase diagram of the Haldane model in a completely unbiased fashion.
Our work provides a benchmark for unsupervised detection of new exotic phases in complex many-body systems.
arXiv Detail & Related papers (2021-01-14T16:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.