論文の概要: Towards Universal Large-Scale Foundational Model for Natural Gas Demand Forecasting
- arxiv url: http://arxiv.org/abs/2409.15794v1
- Date: Tue, 24 Sep 2024 06:44:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 08:41:18.876565
- Title: Towards Universal Large-Scale Foundational Model for Natural Gas Demand Forecasting
- Title(参考訳): 天然ガス需要予測のための大規模基盤モデルの構築に向けて
- Authors: Xinxing Zhou, Jiaqi Ye, Shubao Zhao, Ming Jin, Zhaoxiang Hou, Chengyi Yang, Zengxiang Li, Yanlong Wen, Xiaojie Yuan,
- Abstract要約: 本稿では,天然ガス需要予測に適した基礎モデルを提案する。
提案手法は,現実シナリオの予測精度を向上させるために,コントラスト学習を利用する。
ENNグループによる大規模データセットを用いた広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 12.60741035434783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of global energy strategy, accurate natural gas demand forecasting is crucial for ensuring efficient resource allocation and operational planning. Traditional forecasting methods struggle to cope with the growing complexity and variability of gas consumption patterns across diverse industries and commercial sectors. To address these challenges, we propose the first foundation model specifically tailored for natural gas demand forecasting. Foundation models, known for their ability to generalize across tasks and datasets, offer a robust solution to the limitations of traditional methods, such as the need for separate models for different customer segments and their limited generalization capabilities. Our approach leverages contrastive learning to improve prediction accuracy in real-world scenarios, particularly by tackling issues such as noise in historical consumption data and the potential misclassification of similar data samples, which can lead to degradation in the quaility of the representation and thus the accuracy of downstream forecasting tasks. By integrating advanced noise filtering techniques within the contrastive learning framework, our model enhances the quality of learned representations, leading to more accurate predictions. Furthermore, the model undergoes industry-specific fine-tuning during pretraining, enabling it to better capture the unique characteristics of gas consumption across various sectors. We conducted extensive experiments using a large-scale dataset from ENN Group, which includes data from over 10,000 industrial, commercial, and welfare-related customers across multiple regions. Our model outperformed existing state-of-the-art methods, demonstrating a relative improvement in MSE by 3.68\% and in MASE by 6.15\% compared to the best available model.
- Abstract(参考訳): 地球規模のエネルギー戦略の文脈では、効率的な資源配分と運用計画を確保するために、正確な天然ガス需要予測が不可欠である。
従来の予測手法は、様々な産業や商業分野におけるガス消費パターンの複雑さと変動に対処するのに苦労している。
これらの課題に対処するため,天然ガス需要予測に適した基礎モデルを提案する。
タスクやデータセットをまたいで一般化できることで知られるファンデーションモデルは、さまざまな顧客セグメントの別々のモデルの必要性や、その限定的な一般化機能といった、従来のメソッドの制限に対する堅牢なソリューションを提供する。
提案手法は, 実世界のシナリオにおける予測精度の向上に対照的な学習を活用し, 特に過去の消費データにおけるノイズや類似データサンプルの潜在的誤分類といった問題に対処することにより, 表現の質が低下し, 下流予測タスクの精度が低下する可能性がある。
コントラスト学習フレームワークに高度なノイズフィルタリング技術を統合することにより、学習した表現の質を高め、より正確な予測を行うことができる。
さらに、プレトレーニング中に業界固有の微調整を行い、様々な分野におけるガス消費の特徴をより正確に把握することができる。
産業・商業・福祉関連顧客1万人以上のデータを含む,ENN Groupの大規模データセットを用いた広範囲な実験を行った。
我々のモデルは既存の最先端手法よりも優れており、MSEが3.68 %、MASEが6.15 %向上したことを示す。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Deep Learning based Forecasting: a case study from the online fashion
industry [7.694480564850072]
本稿では,この予測問題に対するデータとモデリング手法の詳細と実験結果について述べる。
本稿では,この予測問題に対するデータとモデリング手法の詳細と実験結果について述べる。
論文 参考訳(メタデータ) (2023-05-23T13:30:35Z) - LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for
Forecasting, with an Application to Electricity Smart Meter Data [3.0839245814393728]
我々は,大域的なモデル予測を説明するために,局所解釈可能なモデルに依存しないルールベース予測(LIMREF)を提案する。
本稿では,LIMREFフレームワークによる説明の質を質的・定量的に評価する。
論文 参考訳(メタデータ) (2022-02-15T22:35:11Z) - A Clustering-aided Ensemble Method for Predicting Ridesourcing Demand in
Chicago [0.0]
本研究では,配車サービスにおけるゾーン間移動需要を予測するためのクラスタリング支援型アンサンブル手法(CEM)を提案する。
シカゴのライドソーシングトリップデータを用いて提案手法の実装と試験を行った。
論文 参考訳(メタデータ) (2021-09-08T04:58:29Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z) - Profit-oriented sales forecasting: a comparison of forecasting
techniques from a business perspective [3.613072342189595]
本稿では,コカ・コーラ社の産業界データと公開データセットの両方から成る35回連続のテクニックを比較検討する。
モデル構築と評価プロセスの両方において、テクニックが生成できる期待される利益を考慮に入れた、新しく完全に自動化された利益主導のアプローチを導入します。
論文 参考訳(メタデータ) (2020-02-03T14:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。