論文の概要: iGAiVA: Integrated Generative AI and Visual Analytics in a Machine Learning Workflow for Text Classification
- arxiv url: http://arxiv.org/abs/2409.15848v1
- Date: Tue, 24 Sep 2024 08:19:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 08:31:23.258281
- Title: iGAiVA: Integrated Generative AI and Visual Analytics in a Machine Learning Workflow for Text Classification
- Title(参考訳): iGAiVA:テキスト分類のための機械学習ワークフローにおける生成AIとビジュアルアナリティクスの統合
- Authors: Yuanzhe Jin, Adrian Carrasco-Revilla, Min Chen,
- Abstract要約: 視覚分析(VA)を用いて,大規模言語モデルを用いた合成データの生成を誘導する手法を提案する。
本稿では,データ不足の種別について論じ,その識別を支援するVA技術について述べるとともに,対象データ合成の有効性を実証する。
- 参考スコア(独自算出の注目度): 2.0094862015890245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In developing machine learning (ML) models for text classification, one common challenge is that the collected data is often not ideally distributed, especially when new classes are introduced in response to changes of data and tasks. In this paper, we present a solution for using visual analytics (VA) to guide the generation of synthetic data using large language models. As VA enables model developers to identify data-related deficiency, data synthesis can be targeted to address such deficiency. We discuss different types of data deficiency, describe different VA techniques for supporting their identification, and demonstrate the effectiveness of targeted data synthesis in improving model accuracy. In addition, we present a software tool, iGAiVA, which maps four groups of ML tasks into four VA views, integrating generative AI and VA into an ML workflow for developing and improving text classification models.
- Abstract(参考訳): テキスト分類のための機械学習(ML)モデルを開発する上で、一般的な課題は、収集されたデータが理想的に分散されないことであり、特にデータやタスクの変更に応じて新しいクラスが導入される場合である。
本稿では,視覚分析(VA)を用いて,大規模言語モデルを用いた合成データの生成を誘導する手法を提案する。
VAにより、モデル開発者がデータ関連の欠陥を識別できるため、データ合成はそのような欠陥に対処するためにターゲットにすることができる。
本稿では,異なる種類のデータ不足を議論し,その識別を支援するVA技術について述べるとともに,モデル精度の向上に向け,対象データ合成の有効性を実証する。
さらに、機械学習タスクの4つのグループを4つのVAビューにマッピングし、生成AIとVAをMLワークフローに統合し、テキスト分類モデルの開発と改善を行うソフトウェアツールiGAiVAを提案する。
関連論文リスト
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
本稿では,データ視覚化における大規模言語モデルの習熟度を評価するために設計された,新しい合成データセットを提案する。
我々のデータセットは、制御されたパラメータを使って生成され、潜在的な現実世界シナリオの包括的カバレッジが保証されます。
我々は、画像中の視覚データに関連する質問を多モーダルテキストプロンプトを用いて、いくつかの最先端モデルをベンチマークする。
論文 参考訳(メタデータ) (2024-09-04T11:19:17Z) - Towards Automatic Translation of Machine Learning Visual Insights to
Analytical Assertions [23.535630175567146]
機械学習(ML)の可視化で観察される視覚特性をPythonアサーションに変換する自動化ツールを開発するためのビジョンを提示する。
このツールは、ML開発サイクルでこれらの視覚化を手作業で検証するプロセスの合理化を目的としている。
論文 参考訳(メタデータ) (2024-01-15T14:11:59Z) - RegaVAE: A Retrieval-Augmented Gaussian Mixture Variational Auto-Encoder
for Language Modeling [79.56442336234221]
可変オートエンコーダ(VAE)に基づく検索拡張言語モデルであるRegaVAEを紹介する。
テキストコーパスを潜在空間にエンコードし、ソースとターゲットの両方のテキストから現在と将来の情報をキャプチャする。
各種データセットに対する実験結果から,テキスト生成品質と幻覚除去の大幅な改善が示された。
論文 参考訳(メタデータ) (2023-10-16T16:42:01Z) - Interpretable Sentence Representation with Variational Autoencoders and
Attention [0.685316573653194]
自然言語処理(NLP)における近年の表現学習技術の解釈可能性を高める手法を開発した。
変動オートエンコーダ (VAEs) は, 遅延生成因子の観測に有効である。
帰納的バイアスを持つ2つのモデルを構築し、潜在表現の情報を注釈付きデータなしで理解可能な概念に分離する。
論文 参考訳(メタデータ) (2023-05-04T13:16:15Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
言語支援の異なる特徴前処理手法を用いて特徴密度(FD)の有効性を検討した。
データセットの複雑さを推定することで、必要な実験の数を削減できると仮定する。
データセットの言語的複雑さの違いにより、言語的に支援された単語前処理の有効性を議論することが可能になる。
論文 参考訳(メタデータ) (2021-11-02T15:48:28Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
多変量データセットにおけるパターンの識別と視覚的解釈を支援するVAX(multiVariate dAta eXplanation)を提案する。
既存の類似のアプローチとは異なり、VAXはJumping Emerging Patternsという概念を使って、複数の多様化したパターンを特定し、集約し、データ変数のロジックの組み合わせを通して説明を生成する。
論文 参考訳(メタデータ) (2021-06-21T13:49:44Z) - Visualisation and knowledge discovery from interpretable models [0.0]
欠落した値も扱える本質的な解釈可能なモデルをいくつか紹介する。
合成データセットと実世界のデータセットでアルゴリズムを実証した。
論文 参考訳(メタデータ) (2020-05-07T17:37:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。