論文の概要: Machine learning approaches for automatic defect detection in photovoltaic systems
- arxiv url: http://arxiv.org/abs/2409.16069v1
- Date: Tue, 24 Sep 2024 13:11:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 05:46:35.956152
- Title: Machine learning approaches for automatic defect detection in photovoltaic systems
- Title(参考訳): 太陽光発電システムにおける自動欠陥検出のための機械学習手法
- Authors: Swayam Rajat Mohanty, Moin Uddin Maruf, Vaibhav Singh, Zeeshan Ahmad,
- Abstract要約: 太陽電池(PV)モジュールは、製造、設置、運用中に損傷を受けやすい。
無人航空機による運用中のPVモジュールの継続的な監視が不可欠である。
コンピュータビジョンは、大規模なPVプラントの欠陥を監視するための、自動的で非破壊的で費用対効果の高いツールを提供する。
- 参考スコア(独自算出の注目度): 1.121744174061766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solar photovoltaic (PV) modules are prone to damage during manufacturing, installation and operation which reduces their power conversion efficiency. This diminishes their positive environmental impact over the lifecycle. Continuous monitoring of PV modules during operation via unmanned aerial vehicles is essential to ensure that defective panels are promptly replaced or repaired to maintain high power conversion efficiencies. Computer vision provides an automatic, non-destructive and cost-effective tool for monitoring defects in large-scale PV plants. We review the current landscape of deep learning-based computer vision techniques used for detecting defects in solar modules. We compare and evaluate the existing approaches at different levels, namely the type of images used, data collection and processing method, deep learning architectures employed, and model interpretability. Most approaches use convolutional neural networks together with data augmentation or generative adversarial network-based techniques. We evaluate the deep learning approaches by performing interpretability analysis on classification tasks. This analysis reveals that the model focuses on the darker regions of the image to perform the classification. We find clear gaps in the existing approaches while also laying out the groundwork for mitigating these challenges when building new models. We conclude with the relevant research gaps that need to be addressed and approaches for progress in this field: integrating geometric deep learning with existing approaches for building more robust and reliable models, leveraging physics-based neural networks that combine domain expertise of physical laws to build more domain-aware deep learning models, and incorporating interpretability as a factor for building models that can be trusted. The review points towards a clear roadmap for making this technology commercially relevant.
- Abstract(参考訳): 太陽電池(PV)モジュールは、製造、設置、運用中に損傷を受けやすいため、電力変換効率が低下する。
これにより、ライフサイクルに対する肯定的な環境影響が減少する。
無人航空機による運用中のPVモジュールの継続的な監視は、欠陥パネルが迅速に交換または修復され、高い電力変換効率を維持するために不可欠である。
コンピュータビジョンは、大規模なPVプラントの欠陥を監視するための、自動的で非破壊的で費用対効果の高いツールを提供する。
太陽電池モジュールの欠陥検出に使用される深層学習型コンピュータビジョン技術の現状を概観する。
本研究では,画像の種類,データ収集と処理方法,ディープラーニングアーキテクチャ,モデル解釈可能性など,さまざまなレベルで既存のアプローチを比較し,評価する。
ほとんどのアプローチでは、畳み込みニューラルネットワークとデータ拡張または生成的対向的ネットワークベース技術を使用する。
分類タスクの解釈可能性分析を行うことで,ディープラーニングのアプローチを評価する。
この分析により,モデルが画像の暗い領域に焦点をあてて分類を行うことが明らかとなった。
既存のアプローチには明確なギャップがあり、同時に、新しいモデルを構築する際の課題を軽減するための基盤も構築しています。
幾何学的なディープラーニングを、より堅牢で信頼性の高いモデルを構築するための既存のアプローチに統合すること、物理法則のドメインの専門知識を組み合わせた物理ベースのニューラルネットワークを活用して、よりドメインを意識したディープラーニングモデルを構築すること、信頼できるモデルを構築するための要素として解釈可能性を統合すること。
レビューでは、この技術を商業的に意味のあるものにするための明確なロードマップを論じている。
関連論文リスト
- Interactive Visual Assessment for Text-to-Image Generation Models [28.526897072724662]
生成モデルのための動的インタラクティブビジュアルアセスメントフレームワークDyEvalを提案する。
DyEvalは直感的なビジュアルインターフェースを備えており、ユーザーは対話的にモデルの振る舞いを探索し分析することができる。
我々のフレームワークは、生成モデルを改善するための貴重な洞察を提供し、視覚生成システムの信頼性と能力を向上するための幅広い意味を持つ。
論文 参考訳(メタデータ) (2024-11-23T10:06:18Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - A Review of Transformer-Based Models for Computer Vision Tasks: Capturing Global Context and Spatial Relationships [0.5639904484784127]
トランスフォーマーモデルによる自然言語処理(NLP)の展望の変化
これらのモデルは、長距離依存やコンテキスト情報をキャプチャする能力で有名である。
コンピュータビジョンにおけるトランスフォーマーモデルの研究の方向性と応用について論じる。
論文 参考訳(メタデータ) (2024-08-27T16:22:18Z) - Space-scale Exploration of the Poor Reliability of Deep Learning Models: the Case of the Remote Sensing of Rooftop Photovoltaic Systems [0.7499722271664147]
ディープラーニングを用いた屋上PVシステムのリモートセンシングが有望なソリューションとして浮上した。
既存の技術は、屋上PVの最新の統計を構築するのに十分な信頼性を持っていない。
本研究では,屋上PVパネルの検出を訓練したディープラーニングモデルの分類精度に及ぼす分布シフトの影響を網羅的に評価する。
論文 参考訳(メタデータ) (2024-07-31T14:34:18Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
仮面モデリングは、トレーニング中に比例的にマスキングされる元のデータの一部を予測する、独特なアプローチとして現れてきた。
マスクモデリングにおけるテクニックの詳細については,多様なマスキング戦略,ターゲット回復,ネットワークアーキテクチャなどについて詳述する。
我々は、現在の手法の限界について議論し、マスクモデリング研究を進めるためのいくつかの道のりを指摘した。
論文 参考訳(メタデータ) (2023-12-31T12:03:21Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Exploiting Large Neuroimaging Datasets to Create Connectome-Constrained
Approaches for more Robust, Efficient, and Adaptable Artificial Intelligence [4.998666322418252]
我々は、脳の地図を含む大きなニューロイメージングデータセットを利用するパイプラインを構想する。
我々は,繰り返しるサブサーキットやモチーフの発見手法を開発した。
第3に、チームはフルーツフライコネクトームのメモリ形成の回路を分析し、新しい生成的リプレイアプローチの設計を可能にした。
論文 参考訳(メタデータ) (2023-05-26T23:04:53Z) - From Modern CNNs to Vision Transformers: Assessing the Performance,
Robustness, and Classification Strategies of Deep Learning Models in
Histopathology [1.8947504307591034]
我々は、広範囲の分類モデルを広範囲に評価する新しい手法を開発した。
広く使用されている5つの病理組織学的データセットを用いて,そのモデルを徹底的に検証した。
既存の解釈可能性手法を拡張し、モデルの分類戦略に関する洞察を体系的に明らかにする。
論文 参考訳(メタデータ) (2022-04-11T12:26:19Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
本論文では,現在FPD業界で主流となっている液晶ディスプレイ(LCD)の視覚検査システムについて述べる。
システムは、堅牢/高性能欠陥認識モデルと認知視覚検査サービスアーキテクチャの2つの基礎に基づいています。
論文 参考訳(メタデータ) (2021-01-11T08:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。