GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification
- URL: http://arxiv.org/abs/2409.16082v1
- Date: Tue, 24 Sep 2024 13:30:38 GMT
- Title: GS-Net: Global Self-Attention Guided CNN for Multi-Stage Glaucoma Classification
- Authors: Dipankar Das, Deepak Ranjan Nayak,
- Abstract summary: Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected.
This paper proposes a global self-attention based network called GS-Net for efficient multi-stage glaucoma classification.
- Score: 3.7942836520893017
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glaucoma is a common eye disease that leads to irreversible blindness unless timely detected. Hence, glaucoma detection at an early stage is of utmost importance for a better treatment plan and ultimately saving the vision. The recent literature has shown the prominence of CNN-based methods to detect glaucoma from retinal fundus images. However, such methods mainly focus on solving binary classification tasks and have not been thoroughly explored for the detection of different glaucoma stages, which is relatively challenging due to minute lesion size variations and high inter-class similarities. This paper proposes a global self-attention based network called GS-Net for efficient multi-stage glaucoma classification. We introduce a global self-attention module (GSAM) consisting of two parallel attention modules, a channel attention module (CAM) and a spatial attention module (SAM), to learn global feature dependencies across channel and spatial dimensions. The GSAM encourages extracting more discriminative and class-specific features from the fundus images. The experimental results on a publicly available dataset demonstrate that our GS-Net outperforms state-of-the-art methods. Also, the GSAM achieves competitive performance against popular attention modules.
Related papers
- DMS-Net:Dual-Modal Multi-Scale Siamese Network for Binocular Fundus Image Classification [8.010725085988296]
Ophthalmic diseases pose a significant global health challenge, yet traditional diagnosis methods often fail to account for binocular pathological correlations.
We propose DMS-Net, a dual-modal multi-scale Siamese network for binocular fundus image classification.
Our framework leverages weight-shared Siamese ResNet-152 backbones to extract deep semantic features from paired fundus images.
arXiv Detail & Related papers (2025-04-25T03:27:28Z) - Enhancing Fundus Image-based Glaucoma Screening via Dynamic Global-Local Feature Integration [26.715346685730484]
We propose a self-adaptive attention window that autonomously determines optimal boundaries for enhanced feature extraction.
We also introduce a multi-head attention mechanism to effectively fuse global and local features via feature linear readout.
Experimental results demonstrate that our method achieves superior accuracy and robustness in glaucoma classification.
arXiv Detail & Related papers (2025-04-01T05:28:14Z) - Leveraging Vision-Language Embeddings for Zero-Shot Learning in Histopathology Images [7.048241543461529]
We propose a novel framework called Multi-Resolution Prompt-guided Hybrid Embedding (MR-PHE) to address these challenges in zero-shot histopathology image classification.
We introduce a hybrid embedding strategy that integrates global image embeddings with weighted patch embeddings.
A similarity-based patch weighting mechanism assigns attention-like weights to patches based on their relevance to class embeddings.
arXiv Detail & Related papers (2025-03-13T12:18:37Z) - Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification [50.899861205016265]
We propose a new framework PaGMIL to mitigate catastrophic forgetting in breast cancer WSI classification.
Our framework introduces two key components into the common MIL model architecture.
We evaluate the continual learning performance of PaGMIL across several public breast cancer datasets.
arXiv Detail & Related papers (2025-03-08T04:51:58Z) - Graph-Guided Test-Time Adaptation for Glaucoma Diagnosis using Fundus Photography [36.328434151676525]
Glaucoma is a leading cause of irreversible blindness worldwide.
Deep learning approaches using fundus images have largely improved early diagnosis of glaucoma.
Variations in images from different devices and locations (known as domain shifts) challenge the use of pre-trained models in real-world settings.
We propose a novel Graph-guided Test-Time Adaptation framework to generalize glaucoma diagnosis models to unseen test environments.
arXiv Detail & Related papers (2024-07-05T10:06:55Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - From WSI-level to Patch-level: Structure Prior Guided Binuclear Cell
Fine-grained Detection [8.810499770542553]
Binuclear cell (BC) detection plays a significant role in predicting the risk of leukemia and other malignant tumors.
We propose a two-stage detection method inspired by the structure prior to BC based on deep learning.
The coarse detection network is a multi-task detection framework based on circular bounding boxes for cells detection, and central key points for nucleus detection.
arXiv Detail & Related papers (2022-08-26T12:32:05Z) - Discriminative Kernel Convolution Network for Multi-Label Ophthalmic
Disease Detection on Imbalanced Fundus Image Dataset [13.687617973585983]
Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataract are the main reason for visual impairment around the world.
This work presents a discriminative kernel convolution network (DKCNet), which explores discriminative region-wise features.
It is found to give good performance on completely unseen fundus images also.
arXiv Detail & Related papers (2022-07-16T12:03:27Z) - GAMMA Challenge:Glaucoma grAding from Multi-Modality imAges [48.98620387924817]
We set up the Glaucoma grAding from Multi-Modality imAges (GAMMA) Challenge to encourage the development of fundus & OCT-based glaucoma grading.
The primary task of the challenge is to grade glaucoma from both the 2D fundus images and 3D OCT scanning volumes.
We have publicly released a glaucoma annotated dataset with both 2D fundus color photography and 3D OCT volumes, which is the first multi-modality dataset for glaucoma grading.
arXiv Detail & Related papers (2022-02-14T06:54:15Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
Glaucoma is one of the leading causes of blindness worldwide.
We propose, for the first time, a novel framework for glaucoma grading using raw circumpapillary B-scans.
In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep learning algorithms.
arXiv Detail & Related papers (2021-06-25T10:53:01Z) - Multimodal Transfer Learning-based Approaches for Retinal Vascular
Segmentation [2.672151045393935]
The study of the retinal microcirculation is a key issue in the analysis of many ocular and systemic diseases, like hypertension or diabetes.
FCNs usually represent the most successful approach to image segmentation.
In this work, we present multimodal transfer learning-based approaches for retinal vascular segmentation.
arXiv Detail & Related papers (2020-12-18T10:38:35Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Dense Attention Fluid Network for Salient Object Detection in Optical
Remote Sensing Images [193.77450545067967]
We propose an end-to-end Dense Attention Fluid Network (DAFNet) for salient object detection in optical remote sensing images (RSIs)
A Global Context-aware Attention (GCA) module is proposed to adaptively capture long-range semantic context relationships.
We construct a new and challenging optical RSI dataset for SOD that contains 2,000 images with pixel-wise saliency annotations.
arXiv Detail & Related papers (2020-11-26T06:14:10Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.