Graph-Guided Test-Time Adaptation for Glaucoma Diagnosis using Fundus Photography
- URL: http://arxiv.org/abs/2407.04396v2
- Date: Wed, 10 Jul 2024 03:54:23 GMT
- Title: Graph-Guided Test-Time Adaptation for Glaucoma Diagnosis using Fundus Photography
- Authors: Qian Zeng, Le Zhang, Yipeng Liu, Ce Zhu, Fan Zhang,
- Abstract summary: Glaucoma is a leading cause of irreversible blindness worldwide.
Deep learning approaches using fundus images have largely improved early diagnosis of glaucoma.
Variations in images from different devices and locations (known as domain shifts) challenge the use of pre-trained models in real-world settings.
We propose a novel Graph-guided Test-Time Adaptation framework to generalize glaucoma diagnosis models to unseen test environments.
- Score: 36.328434151676525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glaucoma is a leading cause of irreversible blindness worldwide. While deep learning approaches using fundus images have largely improved early diagnosis of glaucoma, variations in images from different devices and locations (known as domain shifts) challenge the use of pre-trained models in real-world settings. To address this, we propose a novel Graph-guided Test-Time Adaptation (GTTA) framework to generalize glaucoma diagnosis models to unseen test environments. GTTA integrates the topological information of fundus images into the model training, enhancing the model's transferability and reducing the risk of learning spurious correlation. During inference, GTTA introduces a novel test-time training objective to make the source-trained classifier progressively adapt to target patterns with reliable class conditional estimation and consistency regularization. Experiments on cross-domain glaucoma diagnosis benchmarks demonstrate the superiority of the overall framework and individual components under different backbone networks.
Related papers
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Enhance Eye Disease Detection using Learnable Probabilistic Discrete Latents in Machine Learning Architectures [1.6000489723889526]
Ocular diseases, including diabetic retinopathy and glaucoma, present a significant public health challenge.
Deep learning models have emerged as powerful tools for analysing medical images, such as retina imaging.
Challenges persist in model relibability and uncertainty estimation, which are critical for clinical decision-making.
arXiv Detail & Related papers (2024-01-21T04:14:54Z) - Generative Adversarial Networks for Stain Normalisation in
Histopathology [2.2166690647926037]
One of the significant roadblocks to current research is the high level of visual variability across digital pathology images.
Sten normalisation aims to standardise the visual profile of digital pathology images without changing the structural content of the images.
This is an ongoing field of study as researchers aim to identify a method which efficiently normalises pathology images to make AI models more robust and generalisable.
arXiv Detail & Related papers (2023-08-05T11:38:05Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - RADNet: Ensemble Model for Robust Glaucoma Classification in Color
Fundus Images [0.0]
Glaucoma is one of the most severe eye diseases, characterized by rapid progression and leading to irreversible blindness.
Regular glaucoma screenings of the population shall improve early-stage detection, however the desirable frequency of etymological checkups is often not feasible.
In our work, we propose an advanced image pre-processing technique combined with an ensemble of deep classification networks.
arXiv Detail & Related papers (2022-05-25T16:48:00Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Self-Supervised Domain Adaptation for Diabetic Retinopathy Grading using
Vessel Image Reconstruction [61.58601145792065]
We learn invariant target-domain features by defining a novel self-supervised task based on retinal vessel image reconstructions.
It can be shown that our approach outperforms existing domain strategies.
arXiv Detail & Related papers (2021-07-20T09:44:07Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
Glaucoma is one of the leading causes of blindness worldwide.
We propose, for the first time, a novel framework for glaucoma grading using raw circumpapillary B-scans.
In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep learning algorithms.
arXiv Detail & Related papers (2021-06-25T10:53:01Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
arXiv Detail & Related papers (2020-11-29T06:42:08Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.