Problem-oriented AutoML in Clustering
- URL: http://arxiv.org/abs/2409.16218v1
- Date: Tue, 24 Sep 2024 16:25:53 GMT
- Title: Problem-oriented AutoML in Clustering
- Authors: Matheus Camilo da Silva, Gabriel Marques Tavares, Eric Medvet, Sylvio Barbon Junior,
- Abstract summary: The Problem-oriented AutoML in Clustering (PoAC) framework introduces a novel, flexible approach to automating clustering tasks.
PoAC establishes a dynamic connection between the clustering problem, CVIs, and meta-features, allowing users to customize these components.
PoAC is algorithm-agnostic, adapting seamlessly to different clustering problems without requiring additional data or retraining.
- Score: 2.541080349729282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Problem-oriented AutoML in Clustering (PoAC) framework introduces a novel, flexible approach to automating clustering tasks by addressing the shortcomings of traditional AutoML solutions. Conventional methods often rely on predefined internal Clustering Validity Indexes (CVIs) and static meta-features, limiting their adaptability and effectiveness across diverse clustering tasks. In contrast, PoAC establishes a dynamic connection between the clustering problem, CVIs, and meta-features, allowing users to customize these components based on the specific context and goals of their task. At its core, PoAC employs a surrogate model trained on a large meta-knowledge base of previous clustering datasets and solutions, enabling it to infer the quality of new clustering pipelines and synthesize optimal solutions for unseen datasets. Unlike many AutoML frameworks that are constrained by fixed evaluation metrics and algorithm sets, PoAC is algorithm-agnostic, adapting seamlessly to different clustering problems without requiring additional data or retraining. Experimental results demonstrate that PoAC not only outperforms state-of-the-art frameworks on a variety of datasets but also excels in specific tasks such as data visualization, and highlight its ability to dynamically adjust pipeline configurations based on dataset complexity.
Related papers
- CLAMS: A System for Zero-Shot Model Selection for Clustering [3.7127285734321194]
We propose an AutoML system that enables model selection on clustering problems by leveraging optimal transport-based dataset similarity.
We compare our results against multiple clustering baselines and find that it outperforms all of them, hence demonstrating the utility of similarity-based automated model selection for solving clustering applications.
arXiv Detail & Related papers (2024-07-15T23:50:07Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - Dynamic Clustering and Cluster Contrastive Learning for Unsupervised
Person Re-identification [29.167783500369442]
Unsupervised Re-ID methods aim at learning robust and discriminative features from unlabeled data.
We propose a dynamic clustering and cluster contrastive learning (DCCC) method.
Experiments on several widely used public datasets validate the effectiveness of our proposed DCCC.
arXiv Detail & Related papers (2023-03-13T01:56:53Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - A Deep Learning Object Detection Method for an Efficient Clusters
Initialization [6.365889364810239]
Clustering has been used in numerous applications such as banking customers profiling, document retrieval, image segmentation, and e-commerce recommendation engines.
Existing clustering techniques present significant limitations, from which is the dependability of their stability on the initialization parameters.
This paper proposes a solution that can provide near-optimal clustering parameters with low computational and resources overhead.
arXiv Detail & Related papers (2021-04-28T08:34:25Z) - ClusterVO: Clustering Moving Instances and Estimating Visual Odometry
for Self and Surroundings [54.33327082243022]
ClusterVO is a stereo Visual Odometry which simultaneously clusters and estimates the motion of both ego and surrounding rigid clusters/objects.
Unlike previous solutions relying on batch input or imposing priors on scene structure or dynamic object models, ClusterVO is online, general and thus can be used in various scenarios including indoor scene understanding and autonomous driving.
arXiv Detail & Related papers (2020-03-29T09:06:28Z) - Multi-objective Consensus Clustering Framework for Flight Search
Recommendation [4.5782961896413035]
Clustering ensemble approaches were developed to overcome well-known problems of classical clustering approaches.
We present a new clustering ensemble multi-objective optimization-based framework developed for analyzing Amadeus customer search data.
arXiv Detail & Related papers (2020-02-20T03:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.