論文の概要: Beyond Following: Mixing Active Initiative into Computational Creativity
- arxiv url: http://arxiv.org/abs/2409.16291v1
- Date: Fri, 6 Sep 2024 18:56:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 17:42:27.696894
- Title: Beyond Following: Mixing Active Initiative into Computational Creativity
- Title(参考訳): 以下に示す: アクティブイニシアティブを計算創造性に混ぜる
- Authors: Zhiyu Lin, Upol Ehsan, Rohan Agarwal, Samihan Dani, Vidushi Vashishth, Mark Riedl,
- Abstract要約: 本研究では,アクティブで学習的なAIエージェントが創造的責任を期待する創造者に与える影響について検討する。
我々は、人間から学習し、協調的な意思決定の信念を更新し、その能力の切り替えを行うマルチアームバンドエージェントを開発する。
- 参考スコア(独自算出の注目度): 7.366868731714772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Artificial Intelligence (AI) encounters limitations in efficiency and fairness within the realm of Procedural Content Generation (PCG) when human creators solely drive and bear responsibility for the generative process. Alternative setups, such as Mixed-Initiative Co-Creative (MI-CC) systems, exhibited their promise. Still, the potential of an active mixed initiative, where AI takes a role beyond following, is understudied. This work investigates the influence of the adaptive ability of an active and learning AI agent on creators' expectancy of creative responsibilities in an MI-CC setting. We built and studied a system that employs reinforcement learning (RL) methods to learn the creative responsibility preferences of a human user during online interactions. Situated in story co-creation, we develop a Multi-armed-bandit agent that learns from the human creator, updates its collaborative decision-making belief, and switches between its capabilities during an MI-CC experience. With 39 participants joining a human subject study, Our developed system's learning capabilities are well recognized compared to the non-learning ablation, corresponding to a significant increase in overall satisfaction with the MI-CC experience. These findings indicate a robust association between effective MI-CC collaborative interactions, particularly the implementation of proactive AI initiatives, and deepened understanding among all participants.
- Abstract(参考訳): 生成人工知能 (Generative Artificial Intelligence, AI) は、人間の創造者が生成過程に対してのみ責任を負うとき、手続き的コンテンツ生成(PCG)の領域内で効率性と公平性に制限される。
MI-CC(Mixed-Initiative Co-Creative)システムのような代替のセットアップは、彼らの約束を示した。
それでも、AIが後続以上の役割を果たすような、アクティブな混合イニシアチブの可能性は検討されていない。
本研究は,MI-CC設定におけるAIエージェントの適応能力がクリエーターの創造的責任の期待性に与える影響について検討する。
我々は、オンラインインタラクション中に人間の創造的責任選好を学習するための強化学習(RL)手法を用いたシステムを構築し、研究した。
ストーリーコクリエーションにおいて,人間から学習し,協調的な意思決定の信念を更新し,MI-CC体験中にその能力を切り替えるマルチアームバンドエージェントを開発した。
被験者39名を対象に,MI-CC経験による総合的満足度の増加に対応して,本システムにおける学習能力の認知度を非学習的アブレーションと比較した。
これらの結果は、効果的なMI-CC協調相互作用、特にプロアクティブAIイニシアチブの実装と、すべての参加者の理解を深めることの堅牢な関連性を示している。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
分散型および生涯適応型多エージェント協調学習は、中央サーバを使わずに複数のエージェント間のコラボレーションを強化することを目的としている。
動的協調グラフを用いた分散マルチエージェント生涯協調学習アルゴリズムであるDeLAMAを提案する。
論文 参考訳(メタデータ) (2024-03-11T09:21:11Z) - Empowering Large Language Model Agents through Action Learning [85.39581419680755]
大規模言語モデル(LLM)エージェントは最近ますます関心を集めているが、試行錯誤から学ぶ能力は限られている。
我々は、経験から新しい行動を学ぶ能力は、LLMエージェントの学習の進歩に欠かせないものであると論じる。
我々はPython関数の形式でアクションを作成し改善するための反復学習戦略を備えたフレームワークLearningActを紹介した。
論文 参考訳(メタデータ) (2024-02-24T13:13:04Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Modeling Resilience of Collaborative AI Systems [1.869472599236422]
協調人工知能システム(CAIS)は、共通の目標を達成するために、人間と協調して行動する。
CAISは、トレーニングされたAIモデルを使用して、人間のシステムインタラクションを制御することができる。
人間のフィードバックによるオンライン学習では、AIモデルは学習状態のシステムセンサーを通して人間のインタラクションを監視することによって進化する。
これらのセンサーに影響を及ぼす破壊的なイベントは、AIモデルが正確な決定を行い、CAISのパフォーマンスを低下させる能力に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-01-23T10:28:33Z) - Collaborative Learning with Artificial Intelligence Speakers (CLAIS):
Pre-Service Elementary Science Teachers' Responses to the Prototype [0.5113447003407372]
CLAISシステムは、3、4人の人間の学習者がAIスピーカーに参加して小さなグループを形成し、人間とAIはJigsaw学習プロセスに参加する仲間と見なされるように設計されている。
CLAISシステムは15人の小学校教師による理科教育講習会で成功裏に実装された。
論文 参考訳(メタデータ) (2023-12-20T01:19:03Z) - Progressively Efficient Learning [58.6490456517954]
我々はCEIL(Communication-Efficient Interactive Learning)という新しい学習フレームワークを開発した。
CEILは、学習者と教師がより抽象的な意図を交換することで効率的にコミュニケーションする人間のようなパターンの出現につながる。
CEILで訓練されたエージェントは、新しいタスクを素早く習得し、非階層的で階層的な模倣学習を、絶対的な成功率で最大50%、20%上回った。
論文 参考訳(メタデータ) (2023-10-13T07:52:04Z) - Learning in Cooperative Multiagent Systems Using Cognitive and Machine
Models [1.0742675209112622]
マルチエージェントシステム(MAS)は、人間との協調と協調を必要とする多くのアプリケーションにとって重要である。
一つの大きな課題は、動的環境における独立したエージェントの同時学習と相互作用である。
我々はMulti-Agent IBLモデル(MAIBL)の3つの変種を提案する。
我々は,MAIBLモデルが学習速度を向上し,動的CMOTPタスクにおいて,現在のMADRLモデルと比較して様々な報酬設定でコーディネートを達成できることを実証した。
論文 参考訳(メタデータ) (2023-08-18T00:39:06Z) - Team Learning as a Lens for Designing Human-AI Co-Creative Systems [12.24664973838839]
ジェネレーティブでML駆動の対話システムは、人々が創造的なプロセスでコンピュータと対話する方法を変える可能性がある。
オープンエンドタスクドメインにおいて,効果的な人間とAIのコラボレーションを実現する方法が,まだ不明である。
論文 参考訳(メタデータ) (2022-07-06T22:11:13Z) - Towards Effective Human-AI Collaboration in GUI-Based Interactive Task
Learning Agents [29.413358312233253]
我々は、インテリジェントエージェントに有用な対話型タスク学習を可能にする上で重要な課題は、効果的な人間とAIのコラボレーションを促進することであると論じている。
SGILITEシステムを設計・開発・研究するための過去5年間の取り組みを振り返る。
論文 参考訳(メタデータ) (2020-03-05T14:12:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。