DeepScore: A Comprehensive Approach to Measuring Quality in AI-Generated Clinical Documentation
- URL: http://arxiv.org/abs/2409.16307v1
- Date: Tue, 10 Sep 2024 23:06:48 GMT
- Title: DeepScore: A Comprehensive Approach to Measuring Quality in AI-Generated Clinical Documentation
- Authors: Jon Oleson,
- Abstract summary: This paper presents an overview of DeepScribe's methodologies for assessing and managing note quality.
These methodologies aim to enhance the quality of patient care documentation through accountability and continuous improvement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical practitioners are rapidly adopting generative AI solutions for clinical documentation, leading to significant time savings and reduced stress. However, evaluating the quality of AI-generated documentation is a complex and ongoing challenge. This paper presents an overview of DeepScribe's methodologies for assessing and managing note quality, focusing on various metrics and the composite "DeepScore", an overall index of quality and accuracy. These methodologies aim to enhance the quality of patient care documentation through accountability and continuous improvement.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Improving Clinical Documentation with AI: A Comparative Study of Sporo AI Scribe and GPT-4o mini [0.0]
Sporo Health's AI scribe was evaluated against OpenAI's GPT-4o Mini.
Results show that Sporo AI consistently outperformed GPT-4o Mini, achieving higher recall, precision, and overall F1 scores.
arXiv Detail & Related papers (2024-10-20T22:48:40Z) - ACR: A Benchmark for Automatic Cohort Retrieval [1.3547712404175771]
Current cohort retrieval methods rely on automated queries of structured data combined with manual curation.
Recent advancements in large language models (LLMs) and information retrieval (IR) offer promising avenues to revolutionize these systems.
This paper introduces a new task, Automatic Cohort Retrieval (ACR), and evaluates the performance of LLMs and commercial, domain-specific neuro-symbolic approaches.
arXiv Detail & Related papers (2024-06-20T23:04:06Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process.
We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions.
The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care.
arXiv Detail & Related papers (2024-05-28T16:43:41Z) - Enhancing Clinical Efficiency through LLM: Discharge Note Generation for Cardiac Patients [1.379398224469229]
This study addresses inefficiencies and inaccuracies in creating discharge notes manually, particularly for cardiac patients.
Our research evaluates the capability of large language model (LLM) to enhance the documentation process.
Among the various models assessed, Mistral-7B distinguished itself by accurately generating discharge notes.
arXiv Detail & Related papers (2024-04-08T01:55:28Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
Signal-quality awareness has been found to increase recognition rates and to support decisions in multisensor environments significantly.
Here, we study the orientation tensor of fingerprint images to quantify signal impairments, such as noise, lack of structure, blur, with the help of symmetry descriptors.
The quantitative results favor quality awareness under all aspects, boosting recognition rates and fusing differently skilled experts efficiently as well as effectively.
arXiv Detail & Related papers (2022-11-24T12:17:49Z) - Consultation Checklists: Standardising the Human Evaluation of Medical
Note Generation [58.54483567073125]
We propose a protocol that aims to increase objectivity by grounding evaluations in Consultation Checklists.
We observed good levels of inter-annotator agreement in a first evaluation study using the protocol.
arXiv Detail & Related papers (2022-11-17T10:54:28Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Towards objectively evaluating the quality of generated medical
summaries [70.09940409175998]
We ask evaluators to count facts, computing precision, recall, f-score, and accuracy from the raw counts.
We apply this to the task of medical report summarisation, where measuring objective quality and accuracy is of paramount importance.
arXiv Detail & Related papers (2021-04-09T15:02:56Z) - Image Based Artificial Intelligence in Wound Assessment: A Systematic
Review [0.0]
Assessment of acute and chronic wounds can help wound care teams improve diagnosis, optimize treatment plans, ease the workload and achieve health-related quality of life to the patient population.
While artificial intelligence has found wide applications in health-related sciences and technology, AI-based systems remain to be developed clinically and computationally for high-quality wound care.
arXiv Detail & Related papers (2020-09-15T14:52:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.