Hierarchical Divide-and-Conquer for Fine-Grained Alignment in LLM-Based Medical Evaluation
- URL: http://arxiv.org/abs/2501.06741v1
- Date: Sun, 12 Jan 2025 07:30:49 GMT
- Title: Hierarchical Divide-and-Conquer for Fine-Grained Alignment in LLM-Based Medical Evaluation
- Authors: Shunfan Zheng, Xiechi Zhang, Gerard de Melo, Xiaoling Wang, Linlin Wang,
- Abstract summary: HDCEval is built on a set of fine-grained medical evaluation guidelines developed in collaboration with professional doctors.
The framework decomposes complex evaluation tasks into specialized subtasks, each evaluated by expert models.
This hierarchical approach ensures that each aspect of the evaluation is handled with expert precision, leading to a significant improvement in alignment with human evaluators.
- Score: 31.061600616994145
- License:
- Abstract: In the rapidly evolving landscape of large language models (LLMs) for medical applications, ensuring the reliability and accuracy of these models in clinical settings is paramount. Existing benchmarks often focus on fixed-format tasks like multiple-choice QA, which fail to capture the complexity of real-world clinical diagnostics. Moreover, traditional evaluation metrics and LLM-based evaluators struggle with misalignment, often providing oversimplified assessments that do not adequately reflect human judgment. To address these challenges, we introduce HDCEval, a Hierarchical Divide-and-Conquer Evaluation framework tailored for fine-grained alignment in medical evaluation. HDCEval is built on a set of fine-grained medical evaluation guidelines developed in collaboration with professional doctors, encompassing Patient Question Relevance, Medical Knowledge Correctness, and Expression. The framework decomposes complex evaluation tasks into specialized subtasks, each evaluated by expert models trained through Attribute-Driven Token Optimization (ADTO) on a meticulously curated preference dataset. This hierarchical approach ensures that each aspect of the evaluation is handled with expert precision, leading to a significant improvement in alignment with human evaluators.
Related papers
- MedCoT: Medical Chain of Thought via Hierarchical Expert [48.91966620985221]
This paper presents MedCoT, a novel hierarchical expert verification reasoning chain method.
It is designed to enhance interpretability and accuracy in biomedical imaging inquiries.
Experimental evaluations on four standard Med-VQA datasets demonstrate that MedCoT surpasses existing state-of-the-art approaches.
arXiv Detail & Related papers (2024-12-18T11:14:02Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Exploring LLM-based Data Annotation Strategies for Medical Dialogue Preference Alignment [22.983780823136925]
This research examines the use of Reinforcement Learning from AI Feedback (RLAIF) techniques to improve healthcare dialogue models.
We argue that the primary challenges in current RLAIF research for healthcare are the limitations of automated evaluation methods.
We present a new evaluation framework based on standardized patient examinations.
arXiv Detail & Related papers (2024-10-05T10:29:19Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
We show how architectural and framework biases combine to influence model performance.
Experiments show imputation performance variations of up to 20% based on preprocessing and implementation choices.
We identify critical gaps between current deep imputation methods and medical requirements.
arXiv Detail & Related papers (2024-07-11T12:33:28Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis.
We propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services.
arXiv Detail & Related papers (2024-03-25T06:17:54Z) - HD-Eval: Aligning Large Language Model Evaluators Through Hierarchical
Criteria Decomposition [92.17397504834825]
HD-Eval is a framework that iteratively aligns large language models evaluators with human preference.
HD-Eval inherits the essence from the evaluation mindset of human experts and enhances the alignment of LLM-based evaluators.
Extensive experiments on three evaluation domains demonstrate the superiority of HD-Eval in further aligning state-of-the-art evaluators.
arXiv Detail & Related papers (2024-02-24T08:01:32Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - Consultation Checklists: Standardising the Human Evaluation of Medical
Note Generation [58.54483567073125]
We propose a protocol that aims to increase objectivity by grounding evaluations in Consultation Checklists.
We observed good levels of inter-annotator agreement in a first evaluation study using the protocol.
arXiv Detail & Related papers (2022-11-17T10:54:28Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Optimizing Medical Treatment for Sepsis in Intensive Care: from
Reinforcement Learning to Pre-Trial Evaluation [2.908482270923597]
Our aim is to establish a framework where reinforcement learning (RL) of optimizing interventions retrospectively allows us a regulatory compliant pathway to prospective clinical testing of the learned policies.
We focus on infections in intensive care units which are one of the major causes of death and difficult to treat because of the complex and opaque patient dynamics.
arXiv Detail & Related papers (2020-03-13T20:31:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.