MRI Radiomics for IDH Genotype Prediction in Glioblastoma Diagnosis
- URL: http://arxiv.org/abs/2409.16329v1
- Date: Mon, 23 Sep 2024 20:34:49 GMT
- Title: MRI Radiomics for IDH Genotype Prediction in Glioblastoma Diagnosis
- Authors: Stanislav Kozák,
- Abstract summary: This paper reviews the recent development in the oncological use of MRI radiomic features.
It focuses on the identification of the isocitrate dehydrogenase (IDH) mutation status, which is an important biomarker for the diagnosis of glioblastoma and grade IV astrocytoma.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiomics is a relatively new field which utilises automatically identified features from radiological scans. It has found a widespread application, particularly in oncology because many of the important oncological biomarkers are not visible to the naked eye. The recent advent of big data, including in medical imaging, and the development of new ML techniques brought the possibility of faster and more accurate oncological diagnosis. Furthermore, standardised mathematical feature extraction based on radiomics helps to eliminate possible radiologist bias. This paper reviews the recent development in the oncological use of MRI radiomic features. It focuses on the identification of the isocitrate dehydrogenase (IDH) mutation status, which is an important biomarker for the diagnosis of glioblastoma and grade IV astrocytoma.
Related papers
- An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis [0.0]
Current imaging methods for diagnosing breast cancer (BC) are associated with limited sensitivity and specificity and modest positive predictive power.
Recent progress in image analysis using artificial intelligence (AI) has created great promise to improve BC diagnosis and subtype differentiation.
Radiomics have been developed to improve sensitivity and specificity of early BC diagnosis and classification.
arXiv Detail & Related papers (2024-06-20T21:01:11Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - A Pilot Study of Relating MYCN-Gene Amplification with
Neuroblastoma-Patient CT Scans [14.442730976318726]
We adopt multiple machine learning (ML) algorithms to predict the presence or absence of MYCN gene amplification.
The dataset is composed of retrospective CT images of 23 neuroblastoma patients.
CNN-based method uses pre-trained convolutional neural network, and radiomics-based method extracts radiomics features.
arXiv Detail & Related papers (2022-05-21T15:14:24Z) - Novel Local Radiomic Bayesian Classifiers for Non-Invasive Prediction of
MGMT Methylation Status in Glioblastoma [0.0]
Expression of the O6-methylguanine-DNA-methyltransferase (MGMT) gene in glioblastoma tumor tissue is of clinical importance.
Currently, MGMT methylation is determined through an invasive brain biopsy and subsequent genetic analysis of the extracted tumor tissue.
We present novel Bayesian classifiers that make probabilistic predictions of MGMT methylation status based on radiomic features extracted from FLAIR-sequence magnetic resonance imagery (MRIs)
arXiv Detail & Related papers (2021-11-30T04:53:23Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
This paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images.
The model achieved promising results as compared to existing state-of-the-art models.
arXiv Detail & Related papers (2021-07-26T16:51:00Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - A systematic review on the role of artificial intelligence in
sonographic diagnosis of thyroid cancer: Past, present and future [0.6523396727243321]
This review follows a methodology-based classification of the different techniques available for thyroid cancer diagnosis.
We reflect on the trends and challenges of the field of sonographic diagnosis of thyroid malignancies.
Machine learning will continue to play a fundamental role in the development of future thyroid cancer diagnosis frameworks.
arXiv Detail & Related papers (2020-06-10T14:38:05Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.