論文の概要: Chasing the Shadows: TTPs in Action to Attribute Advanced Persistent Threats
- arxiv url: http://arxiv.org/abs/2409.16400v1
- Date: Tue, 24 Sep 2024 18:59:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 08:31:10.180872
- Title: Chasing the Shadows: TTPs in Action to Attribute Advanced Persistent Threats
- Title(参考訳): シャドウのカオス: TTPs in Action to Attribute Advanced Persistent Threats
- Authors: Nanda Rani, Bikash Saha, Vikas Maurya, Sandeep Kumar Shukla,
- Abstract要約: 本研究は,CAPTAINという属性法を提示することにより,属性過程における脅威分析を支援することを目的とする。
提案手法は、Cosine、Euclidean、Longest Common Subsequenceといった従来の類似度対策よりも優れている。
CAPTAINは61.36%(トップ-1)と69.98%(トップ-2)の精度で属性を行い、既存の最先端属性法を上回ります。
- 参考スコア(独自算出の注目度): 3.2183320563774833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current state of Advanced Persistent Threats (APT) attribution primarily relies on time-consuming manual processes. These include mapping incident artifacts onto threat attribution frameworks and employing expert reasoning to uncover the most likely responsible APT groups. This research aims to assist the threat analyst in the attribution process by presenting an attribution method named CAPTAIN (Comprehensive Advanced Persistent Threat AttrIbutioN). This novel APT attribution approach leverages the Tactics, Techniques, and Procedures (TTPs) employed by various APT groups in past attacks. CAPTAIN follows two significant development steps: baseline establishment and similarity measure for attack pattern matching. This method starts by maintaining a TTP database of APTs seen in past attacks as baseline behaviour of threat groups. The attribution process leverages the contextual information added by TTP sequences, which reflects the sequence of behaviours threat actors demonstrated during the attack on different kill-chain stages. Then, it compares the provided TTPs with established baseline to identify the most closely matching threat group. CAPTAIN introduces a novel similarity measure for APT group attack-pattern matching that calculates the similarity between TTP sequences. The proposed approach outperforms traditional similarity measures like Cosine, Euclidean, and Longest Common Subsequence (LCS) in performing attribution. Overall, CAPTAIN performs attribution with the precision of 61.36% (top-1) and 69.98% (top-2), surpassing the existing state-of-the-art attribution methods.
- Abstract(参考訳): 現在のAPT(Advanced Persistent Threats)の属性は、主に時間を要する手作業に依存している。
これには、インシデントアーティファクトを脅威帰属フレームワークにマッピングすることや、最も責任を負うAPTグループを明らかにするために専門家の推論を採用することが含まれる。
本研究は,CAPTAIN (Comprehensive Advanced Threat AttrIbutioN) と呼ばれる属性法を提示することにより,属性プロセスにおける脅威分析を支援することを目的とする。
この新しいAPT属性アプローチは、過去の攻撃で様々なAPTグループが採用した戦術、技法、手順(TTP)を活用する。
CAPTAINは、攻撃パターンマッチングのためのベースライン確立と類似度尺度の2つの重要な開発手順に従っている。
この方法は、過去の攻撃で脅威グループのベースライン行動として見られるAPTのTTPデータベースを維持することから始まる。
属性プロセスは、TTPシーケンスによって追加されたコンテキスト情報を活用する。これは、異なるキルチェーンステージへの攻撃中にアクターが示す行動のシーケンスを反映する。
そして、提供されたTPと確立されたベースラインを比較し、最も密に一致した脅威グループを特定する。
CAPTAINは、TTP配列間の類似性を計算するAPTグループアタックパターンマッチングのための新しい類似度尺度を導入した。
提案手法は,コサイン,ユークリッド,Longest Common Subsequence (LCS) などの従来の類似度指標より帰属性が高い。
CAPTAINは61.36%(トップ-1)と69.98%(トップ-2)の精度で属性を行い、既存の最先端属性法を上回ります。
関連論文リスト
- TAPT: Test-Time Adversarial Prompt Tuning for Robust Inference in Vision-Language Models [53.91006249339802]
視覚的対人攻撃に対するCLIPの推論ロバスト性を高めるため, TAPT(Test-Time Adversarial Prompt Tuning)と呼ばれる新しい防御手法を提案する。
TAPTは、CLIPの推論プロセスを堅牢化するために、防御的バイモーダル(テキストと視覚)のプロンプトを学習するテストタイムディフェンス手法である。
我々は、ImageNetなど10のゼロショットデータセットを含む11のベンチマークデータセットに対するTAPTの有効性を評価する。
論文 参考訳(メタデータ) (2024-11-20T08:58:59Z) - A Cascade Approach for APT Campaign Attribution in System Event Logs: Technique Hunting and Subgraph Matching [1.0928166738710612]
本研究では,システムイベントログによるAPTキャンペーン攻撃の特定という課題に対処する。
SFMと呼ばれるカスケーディング手法は、技術狩猟とAPTキャンペーンの属性を組み合わせたものである。
論文 参考訳(メタデータ) (2024-10-29T23:49:28Z) - AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
医療画像や自律運転などの安全クリティカルな応用においては、高い敵の堅牢性を維持し、潜在的敵の攻撃から保護することが不可欠である。
敵対的に訓練されたモデルに固有の不確実性に関して、注目すべき知識ギャップが残っている。
本研究では,共形予測(CP)の性能を標準対向攻撃の文脈で検証することにより,ディープラーニングモデルの不確実性について検討する。
論文 参考訳(メタデータ) (2024-05-14T18:05:19Z) - TREC: APT Tactic / Technique Recognition via Few-Shot Provenance Subgraph Learning [31.959092032106472]
本稿では,深層学習技術を活用することで,APT戦術を証明グラフから認識する最初の試みであるTRECを提案する。
干し草の山」問題に対処するために、TRECは大きな前兆グラフから小さくコンパクトな部分グラフを分割する。
チームによって収集・公開されているカスタマイズデータセットに基づいてTRECを評価した。
論文 参考訳(メタデータ) (2024-02-23T07:05:32Z) - PRAT: PRofiling Adversarial aTtacks [52.693011665938734]
PRofiling Adversarial aTacks (PRAT) の新たな問題点について紹介する。
敵対的な例として、PRATの目的は、それを生成するのに使用される攻撃を特定することである。
AIDを用いてPRATの目的のための新しいフレームワークを考案する。
論文 参考訳(メタデータ) (2023-09-20T07:42:51Z) - CVE-driven Attack Technique Prediction with Semantic Information
Extraction and a Domain-specific Language Model [2.1756081703276]
本稿では、CVE記述を分析し、CVEによるTTP攻撃を推測する革新的な技術を用いて、TTP予測ツールを提案する。
TTPpredictorは、ラベル付きデータとCVEとTP記述のセマンティックな相違によって引き起こされる課題を克服する。
本報告では,CVE分類の95%から98%からATT&CK技術まで,約98%,F1スコアの精度でTTP予測器の有効性を実証した経験的評価を行った。
論文 参考訳(メタデータ) (2023-09-06T06:53:45Z) - From Threat Reports to Continuous Threat Intelligence: A Comparison of
Attack Technique Extraction Methods from Textual Artifacts [11.396560798899412]
脅威レポートには、非構造化テキスト形式で書かれた攻撃戦術、テクニック、手順(TTP)の詳細な記述が含まれている。
文献ではTP抽出法が提案されているが,これらすべての方法が互いに,あるいはベースラインと比較されているわけではない。
本研究では,本研究から既存のTP抽出研究10点を同定し,本研究から5つの方法を実装した。
提案手法は,TFIDF(Term Frequency-Inverse Document Frequency)とLSI(Latent Semantic Indexing)の2つで,F1スコアが84%,83%の他の3手法よりも優れていた。
論文 参考訳(メタデータ) (2022-10-05T23:21:41Z) - CARBEN: Composite Adversarial Robustness Benchmark [70.05004034081377]
本稿では,複合対向攻撃 (CAA) が画像に与える影響を実証する。
異なるモデルのリアルタイム推論を提供し、攻撃レベルのパラメータの設定を容易にする。
CAAに対する敵対的堅牢性を評価するためのリーダーボードも導入されている。
論文 参考訳(メタデータ) (2022-07-16T01:08:44Z) - Adversarial Attacks and Defense for Non-Parametric Two-Sample Tests [73.32304304788838]
本稿では,非パラメトリックTSTの障害モードを逆攻撃により系統的に明らかにする。
TST非依存的な攻撃を可能にするために,異なる種類のテスト基準を協調的に最小化するアンサンブル攻撃フレームワークを提案する。
そこで本研究では,TSTの強化のために,逆対を反復的に生成し,深層カーネルを訓練する最大最小最適化を提案する。
論文 参考訳(メタデータ) (2022-02-07T11:18:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。