論文の概要: Detecting APT Malware Command and Control over HTTP(S) Using Contextual Summaries
- arxiv url: http://arxiv.org/abs/2502.05367v1
- Date: Fri, 07 Feb 2025 22:38:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:29.350436
- Title: Detecting APT Malware Command and Control over HTTP(S) Using Contextual Summaries
- Title(参考訳): コンテキストサマリを用いたHTTP(S)上のAPTマルウェアコマンドと制御の検出
- Authors: Almuthanna Alageel, Sergio Maffeis, Imperial College London,
- Abstract要約: 本稿では,APTマルウェアのコマンドを検知し,コンテキストサマリを用いてHTTP(S)の制御を行うアプローチであるEarlyCrowを提案する。
EarlyCrowの設計は、最近APTキャンペーンで使われたツールによって生成されたトラフィックに存在するTPに着目した、新しい脅威モデルによって通知される。
EarlyCrowはPairFlowと呼ばれる新しい多目的ネットワークフローフォーマットを定義しており、PCAPキャプチャのコンテキスト概要を構築するために利用される。
- 参考スコア(独自算出の注目度): 1.0787328610467801
- License:
- Abstract: Advanced Persistent Threats (APTs) are among the most sophisticated threats facing critical organizations worldwide. APTs employ specific tactics, techniques, and procedures (TTPs) which make them difficult to detect in comparison to frequent and aggressive attacks. In fact, current network intrusion detection systems struggle to detect APTs communications, allowing such threats to persist unnoticed on victims' machines for months or even years. In this paper, we present EarlyCrow, an approach to detect APT malware command and control over HTTP(S) using contextual summaries. The design of EarlyCrow is informed by a novel threat model focused on TTPs present in traffic generated by tools recently used as part of APT campaigns. The threat model highlights the importance of the context around the malicious connections, and suggests traffic attributes which help APT detection. EarlyCrow defines a novel multipurpose network flow format called PairFlow, which is leveraged to build the contextual summary of a PCAP capture, representing key behavioral, statistical and protocol information relevant to APT TTPs. We evaluate the effectiveness of EarlyCrow on unseen APTs obtaining a headline macro average F1-score of 93.02% with FPR of $0.74%.
- Abstract(参考訳): 先進的永続脅威(APT)は、世界中の重要な組織が直面している最も高度な脅威の一つである。
APTは特定の戦術、テクニック、手順(TTP)を採用しており、頻繁で攻撃的な攻撃に比べて検出が困難である。
事実、現在のネットワーク侵入検知システムは、APTの通信を検出するのに苦労しており、そのような脅威が被害者のマシンに何ヶ月、あるいは何年も気づかないまま持続することを可能にしている。
本稿では,APTマルウェアのコマンドを検知し,コンテキストサマリを用いてHTTP(S)の制御を行う手法であるEarlyCrowを提案する。
EarlyCrowの設計は、最近APTキャンペーンの一部として使われたツールによって生成されたトラフィックに存在するTPに着目した、新しい脅威モデルによって通知される。
脅威モデルは悪意のある接続に関するコンテキストの重要性を強調し、APT検出に役立つトラフィック属性を提案する。
EarlyCrowはPairFlowと呼ばれる新しい多目的ネットワークフローフォーマットを定義し、PCAPキャプチャのコンテキスト概要を構築し、APT TTPに関連する重要な行動情報、統計情報、プロトコル情報を表現している。
F1スコアは93.02%,FPRは0.74%であった。
関連論文リスト
- TAPT: Test-Time Adversarial Prompt Tuning for Robust Inference in Vision-Language Models [53.91006249339802]
視覚的対人攻撃に対するCLIPの推論ロバスト性を高めるため, TAPT(Test-Time Adversarial Prompt Tuning)と呼ばれる新しい防御手法を提案する。
TAPTは、CLIPの推論プロセスを堅牢化するために、防御的バイモーダル(テキストと視覚)のプロンプトを学習するテストタイムディフェンス手法である。
我々は、ImageNetなど10のゼロショットデータセットを含む11のベンチマークデータセットに対するTAPTの有効性を評価する。
論文 参考訳(メタデータ) (2024-11-20T08:58:59Z) - A Cascade Approach for APT Campaign Attribution in System Event Logs: Technique Hunting and Subgraph Matching [1.0928166738710612]
本研究では,システムイベントログによるAPTキャンペーン攻撃の特定という課題に対処する。
SFMと呼ばれるカスケーディング手法は、技術狩猟とAPTキャンペーンの属性を組み合わせたものである。
論文 参考訳(メタデータ) (2024-10-29T23:49:28Z) - Chasing the Shadows: TTPs in Action to Attribute Advanced Persistent Threats [3.2183320563774833]
本研究は,CAPTAINという属性法を提示することにより,属性過程における脅威分析を支援することを目的とする。
提案手法は、Cosine、Euclidean、Longest Common Subsequenceといった従来の類似度対策よりも優れている。
CAPTAINは61.36%(トップ-1)と69.98%(トップ-2)の精度で属性を行い、既存の最先端属性法を上回ります。
論文 参考訳(メタデータ) (2024-09-24T18:59:27Z) - AdvQDet: Detecting Query-Based Adversarial Attacks with Adversarial Contrastive Prompt Tuning [93.77763753231338]
CLIP画像エンコーダを微調整し、2つの中間対向クエリに対して同様の埋め込みを抽出するために、ACPT(Adversarial Contrastive Prompt Tuning)を提案する。
我々は,ACPTが7つの最先端クエリベースの攻撃を検出できることを示す。
また,ACPTは3種類のアダプティブアタックに対して堅牢であることを示す。
論文 参考訳(メタデータ) (2024-08-04T09:53:50Z) - A Federated Learning Approach for Multi-stage Threat Analysis in Advanced Persistent Threat Campaigns [25.97800399318373]
高度な永続的脅威(APT)のようなマルチステージの脅威は、データを盗み、インフラストラクチャを破壊することによって深刻なリスクを引き起こす。
APTは新たな攻撃ベクトルを使用し、ネットワークの存在を隠蔽することでシグネチャベースの検出を回避する。
本稿では,APTを検出するための3段階の非教師付きフェデレーション学習(FL)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-19T03:34:41Z) - TREC: APT Tactic / Technique Recognition via Few-Shot Provenance Subgraph Learning [31.959092032106472]
本稿では,深層学習技術を活用することで,APT戦術を証明グラフから認識する最初の試みであるTRECを提案する。
干し草の山」問題に対処するために、TRECは大きな前兆グラフから小さくコンパクトな部分グラフを分割する。
チームによって収集・公開されているカスタマイズデータセットに基づいてTRECを評価した。
論文 参考訳(メタデータ) (2024-02-23T07:05:32Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - CVE-driven Attack Technique Prediction with Semantic Information
Extraction and a Domain-specific Language Model [2.1756081703276]
本稿では、CVE記述を分析し、CVEによるTTP攻撃を推測する革新的な技術を用いて、TTP予測ツールを提案する。
TTPpredictorは、ラベル付きデータとCVEとTP記述のセマンティックな相違によって引き起こされる課題を克服する。
本報告では,CVE分類の95%から98%からATT&CK技術まで,約98%,F1スコアの精度でTTP予測器の有効性を実証した経験的評価を行った。
論文 参考訳(メタデータ) (2023-09-06T06:53:45Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
テスト時間プロンプトチューニング (TPT) を提案し, 適応的なプロンプトを1つのテストサンプルで学習する。
TPTはCLIPのゼロショットトップ1の精度を平均3.6%改善する。
クロスデータセットの一般化を目に見えないカテゴリで評価する際、PTは追加のトレーニングデータを使用する最先端のアプローチと同等に機能する。
論文 参考訳(メタデータ) (2022-09-15T17:55:11Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。