The Influence of Quantum Correlation on the Holonomy of Spatially-Structured Bi-Photons
- URL: http://arxiv.org/abs/2409.16401v3
- Date: Tue, 1 Oct 2024 02:29:49 GMT
- Title: The Influence of Quantum Correlation on the Holonomy of Spatially-Structured Bi-Photons
- Authors: Mark T. Lusk,
- Abstract summary: Entanglement parameters are shown to influence holonomy in two distinct ways.
An optical circuit consisting of a pair of misoriented mode converters gives a practical demonstration.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The manifestation of entanglement within geometric phase is elucidated for spatially-structured bi-photons. Entanglement parameters are shown to influence holonomy in two distinct ways: through statistical superpositions of separable states; and via quantum correlation. These are entwined within geometric phase, motivating the construction of a projective, gauge-invariant measure that allows the manifestation of quantum correlation to be pinpointed and explained. An optical circuit consisting of a pair of misoriented mode converters gives a practical demonstration. This is facilitated by a novel pump engineering method which produces photon pairs with tunable entanglement.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - Biphoton State Reconstruction via Phase Retrieval Methods [0.0]
We show how one can infer the spatial structure of bi-photons generated by spontaneous parametric down conversion.
A spatially resolved analysis of the second-order correlations allows us to isolate the moduli of the pump and phasematching contributions to the two-photon states.
arXiv Detail & Related papers (2024-03-11T16:56:37Z) - Order-invariant two-photon quantum correlations in PT-symmetric
interferometers [62.997667081978825]
Multiphoton correlations in linear photonic quantum networks are governed by matrix permanents.
We show that the overall multiphoton behavior of a network from its individual building blocks typically defies intuition.
Our results underline new ways in which quantum correlations may be preserved in counterintuitive ways even in small-scale non-Hermitian networks.
arXiv Detail & Related papers (2023-02-23T09:43:49Z) - Multiphoton Correlations between Quantum Images [0.8701566919381222]
Experimental demonstrations of entangled quantum images produced through parametric downconversion have so far been confined to studying two photon correlations.
Here we show that multiphoton correlations between quantum images are accessible experimentally and exhibit many new features including being sensitive to the phase of the bi-photon wavefunction.
arXiv Detail & Related papers (2022-11-16T05:07:52Z) - Biphoton engineering using modal spatial overlap on-chip [2.9880862883728105]
We show that by utilizing modal coupling in a system of coupled waveguides, we explore the modal field overlap as a new degree of freedom for biphoton engineering.
This strategy can be applied to waveguides of different materials and structures, offering new possibilities for photonic quantum state engineering.
arXiv Detail & Related papers (2022-10-29T06:04:30Z) - Quantum walks of two correlated photons in a 2D synthetic lattice [0.0]
We report a discrete-time quantum walk of two correlated photons in a two-dimensional lattice, synthetically engineered by manipulating a set of optical modes.
The entire platform is compact, efficient, scalable, and represents a versatile tool to simulate quantum evolutions on complex lattices.
arXiv Detail & Related papers (2022-04-20T10:47:45Z) - Modeling of Multimodal Scattering by Conducting Bodies in Quantum
Optics: the Method of Characteristic Modes [0.0]
We give the quantum adaptation of the characteristic mode approach widely used in the classical electrodynamics.
We show how scattering affects quantum-statistical features of the field.
We expect that this method will be useful for designing quantum-optical devices.
arXiv Detail & Related papers (2021-12-17T14:25:59Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.