Quantum walks of two correlated photons in a 2D synthetic lattice
- URL: http://arxiv.org/abs/2204.09382v1
- Date: Wed, 20 Apr 2022 10:47:45 GMT
- Title: Quantum walks of two correlated photons in a 2D synthetic lattice
- Authors: Chiara Esposito, Mariana R. Barros, Andr\'es Dur\'an Hern\'andez,
Gonzalo Carvacho, Francesco Di Colandrea, Raouf Barboza, Filippo Cardano,
Nicol\`o Spagnolo, Lorenzo Marrucci and Fabio Sciarrino
- Abstract summary: We report a discrete-time quantum walk of two correlated photons in a two-dimensional lattice, synthetically engineered by manipulating a set of optical modes.
The entire platform is compact, efficient, scalable, and represents a versatile tool to simulate quantum evolutions on complex lattices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum walks represent paradigmatic quantum evolutions, enabling powerful
applications in the context of topological physics and quantum computation.
They have been implemented in diverse photonic architectures, but the
realization of a two-particle dynamics on a multi-dimensional lattice has
hitherto been limited to continuous-time evolutions. To fully exploit the
computational capabilities of quantum interference it is crucial to develop
platforms handling multiple photons that propagate across multi-dimensional
lattices. Here, we report a discrete-time quantum walk of two correlated
photons in a two-dimensional lattice, synthetically engineered by manipulating
a set of optical modes carrying quantized amounts of transverse momentum.
Mode-couplings are introduced via the polarization-controlled diffractive
action of thin geometric-phase optical elements. The entire platform is
compact, efficient, scalable, and represents a versatile tool to simulate
quantum evolutions on complex lattices. We expect that it will have a strong
impact on diverse fields such as quantum state engineering, topological quantum
photonics, and Boson Sampling.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - Deterministic generation of arbitrary n-photon states in an integrated
photonic system [0.0]
We propose a chip-integrable scheme to generate a group of n photons with very high fidelity based on the long-range collective interaction between the emitters mediated by the waveguide modes.
Our results can find important applications in the areas such as photonic-chip-based quantum information processing and quantum metrology.
arXiv Detail & Related papers (2023-05-17T01:24:11Z) - Ultrastrong light-matter interaction in a multimode photonic crystal [0.1588748438612071]
We show that the transport of a single photon becomes a many-body problem, owing to the strong participation of multi-photon bound states.
This work opens exciting prospects for exploring nonlinear quantum optics at the single-photon level.
arXiv Detail & Related papers (2022-09-29T17:43:25Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Exploring complex graphs using three-dimensional quantum walks of
correlated photons [52.77024349608834]
We introduce a new paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks.
This novel testbed for the experimental exploration of multi-particle quantum walks on complex, highly connected graphs paves the way towards exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.
arXiv Detail & Related papers (2020-07-10T09:15:44Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.