論文の概要: Vision-based Xylem Wetness Classification in Stem Water Potential Determination
- arxiv url: http://arxiv.org/abs/2409.16412v1
- Date: Tue, 24 Sep 2024 19:24:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 08:31:10.103550
- Title: Vision-based Xylem Wetness Classification in Stem Water Potential Determination
- Title(参考訳): 立体水電位決定における視覚に基づくXylemウェットネス分類
- Authors: Pamodya Peiris, Aritra Samanta, Caio Mucchiani, Cody Simons, Amit Roy-Chowdhury, Konstantinos Karydis,
- Abstract要約: この研究は、スコランダー圧力室を用いた茎検出とキシレム湿性分類の自動化に焦点を当てた。
目的は、茎の検出を洗練し、キシレムにおける水の出現をよりよく分類するためのコンピュータビジョンベースの方法を開発することである。
YOLOv8nによる学習ベース幹細胞検出とResNet50に基づく分類の組み合わせにより、トップ1の精度は80.98%に達した。
- 参考スコア(独自算出の注目度): 8.597874067545233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Water is often overused in irrigation, making efficient management of it crucial. Precision Agriculture emphasizes tools like stem water potential (SWP) analysis for better plant status determination. However, such tools often require labor-intensive in-situ sampling. Automation and machine learning can streamline this process and enhance outcomes. This work focused on automating stem detection and xylem wetness classification using the Scholander Pressure Chamber, a widely used but demanding method for SWP measurement. The aim was to refine stem detection and develop computer-vision-based methods to better classify water emergence at the xylem. To this end, we collected and manually annotated video data, applying vision- and learning-based methods for detection and classification. Additionally, we explored data augmentation and fine-tuned parameters to identify the most effective models. The identified best-performing models for stem detection and xylem wetness classification were evaluated end-to-end over 20 SWP measurements. Learning-based stem detection via YOLOv8n combined with ResNet50-based classification achieved a Top-1 accuracy of 80.98%, making it the best-performing approach for xylem wetness classification.
- Abstract(参考訳): 水は灌水に多用されることが多く、効率的な管理が重要である。
精密農業は、植物の状態を決定するために、ステムウォーターポテンシャル(SWP)分析のようなツールを強調している。
しかし、このようなツールは労働集約的なインサイトサンプリングを必要とすることが多い。
自動化と機械学習は、このプロセスを合理化し、結果を高めることができる。
この研究は、SWP測定に広く用いられているが要求される方法であるScholander Pressure Chamberを用いた、茎検出とキシレム湿性分類の自動化に焦点を当てた。
目的は、茎の検出を洗練し、キシレムにおける水の出現をよりよく分類するためのコンピュータビジョンベースの方法を開発することである。
そこで我々は,映像データを手動で収集し,視覚と学習に基づく検出・分類手法を適用した。
さらに、最も有効なモデルを特定するために、データ拡張と微調整パラメータについて検討した。
茎検出およびキシレム湿潤度分類のための最適性能モデルについて,20SWP以上のエンドツーエンドで評価した。
YOLOv8nによる学習ベースの茎検出とResNet50による分類は80.98%の精度を達成し、キシレム湿潤度分類の最も優れた手法となった。
関連論文リスト
- Deep Learning for Precision Agriculture: Post-Spraying Evaluation and Deposition Estimation [5.971046215117033]
我々は,従来の農法を必要とせず,散布後の精密散布システムを評価するためのXAIパイプラインを提案する。
開発されたシステムは、レタス、ニワトリ、メドウグラスなどの潜在的な標的を意味的に分類し、標的が噴霧されたかどうかを正しく識別することができる。
論文 参考訳(メタデータ) (2024-09-24T16:16:19Z) - Unlearnable Examples Detection via Iterative Filtering [84.59070204221366]
ディープニューラルネットワークは、データ中毒攻撃に弱いことが証明されている。
混合データセットから有毒なサンプルを検出することは極めて有益であり、困難である。
UE識別のための反復フィルタリング手法を提案する。
論文 参考訳(メタデータ) (2024-08-15T13:26:13Z) - Automated Classification of Dry Bean Varieties Using XGBoost and SVM Models [0.0]
本稿では,機械学習モデルを用いた7種類の乾燥豆の自動分類について比較検討する。
XGBoostとSVMのモデルはそれぞれ94.00%と94.39%の正確な分類率を達成した。
本研究は, 種子品質制御と収量最適化を効果的に支援できることを実証し, 精密農業への取り組みの活発化に寄与する。
論文 参考訳(メタデータ) (2024-08-02T13:05:33Z) - High-Throughput Phenotyping using Computer Vision and Machine Learning [0.0]
我々はオークリッジ国立研究所が提供した1,672枚のPopulus Trichocarpaの画像と白ラベルで治療を行った。
光文字認識(OCR)は、植物上でこれらのラベルを読むために用いられた。
機械学習モデルを用いて,これらの分類に基づいて処理を予測し,解析されたEXIFタグを用いて葉の大きさと表現型間の相関を見いだした。
論文 参考訳(メタデータ) (2024-07-08T19:46:31Z) - Identifying Alzheimer Disease Dementia Levels Using Machine Learning
Methods [0.0]
RF, SVM, CNNアルゴリズムを用いて認知症の4段階を分類する手法を提案する。
以上の結果から,浸水特性を持つSVMの精度は96.25%であり,他の分類法よりも高いことがわかった。
論文 参考訳(メタデータ) (2023-11-02T17:44:28Z) - Watermarking for Out-of-distribution Detection [76.20630986010114]
Out-of-Distribution (OOD) 検出は、よく訓練された深層モデルから抽出された表現に基づいてOODデータを識別することを目的としている。
本稿では,透かしという一般的な手法を提案する。
我々は,元データの特徴に重畳される統一パターンを学習し,ウォーターマーキング後にモデルの検出能力が大きく向上する。
論文 参考訳(メタデータ) (2022-10-27T06:12:32Z) - A multiscale spatiotemporal approach for smallholder irrigation
detection [0.0]
本稿では,植生の多次元衛星画像を利用した灌水検出手法を提案する。
本手法は,エチオピア高地,ティグレイ,アムハラの2つの州において,小規模の灌水量を検出するために適用された。
論文 参考訳(メタデータ) (2022-02-09T02:50:42Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
新たに取得した破砕孔データによって課される地球化学的および空間的制約に基づいて, モデル表面を再構成するバイーシアンワープ法が提案されている。
本稿では,このワーピングフレームワークに機械学習を組み込むことにより,可能性の一般化を図る。
その基礎は、p(g|c) が p(y(c)|g と似た役割を果たすような地質領域の確率のベイズ計算によって構成される。
論文 参考訳(メタデータ) (2021-02-15T10:37:52Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
本稿では,データセットから化学的に間違ったエントリを除去するための,機械学習に基づく無支援アプローチを提案する。
その結果,クリーン化およびバランスの取れたデータセットでトレーニングしたモデルの予測精度が向上した。
論文 参考訳(メタデータ) (2021-02-02T09:34:34Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。