論文の概要: A Multi-Dataset Classification-Based Deep Learning Framework for Electronic Health Records and Predictive Analysis in Healthcare
- arxiv url: http://arxiv.org/abs/2409.16721v1
- Date: Wed, 25 Sep 2024 08:13:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 04:50:49.455983
- Title: A Multi-Dataset Classification-Based Deep Learning Framework for Electronic Health Records and Predictive Analysis in Healthcare
- Title(参考訳): 電子健康記録のためのマルチデータセット分類に基づくディープラーニングフレームワークと医療の予測分析
- Authors: Syed Mohd Faisal Malik, Md Tabrez Nafis, Mohd Abdul Ahad, Safdar Tanweer,
- Abstract要約: 本研究では,複数のデータセットを分類するための新しいディープラーニング予測分析フレームワークを提案する。
Residual NetworksとArtificial Neural Networksを組み合わせたハイブリッドディープラーニングモデルを提案し,急性および慢性疾患を検出する。
厳密な実験と評価の結果,網膜基底像,肝硬変ステージ,心疾患診断予測では,93%,99%,95%の精度が得られた。
- 参考スコア(独自算出の注目度): 0.5999777817331317
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contemporary healthcare, to protect patient data, electronic health records have become invaluable repositories, creating vast opportunities to leverage deep learning techniques for predictive analysis. Retinal fundus images, cirrhosis stages, and heart disease diagnostic predictions have shown promising results through the integration of deep learning techniques for classifying diverse datasets. This study proposes a novel deep learning predictive analysis framework for classifying multiple datasets by pre-processing data from three distinct sources. A hybrid deep learning model combining Residual Networks and Artificial Neural Networks is proposed to detect acute and chronic diseases such as heart diseases, cirrhosis, and retinal conditions, outperforming existing models. Dataset preparation involves aspects such as categorical data transformation, dimensionality reduction, and missing data synthesis. Feature extraction is effectively performed using scaler transformation for categorical datasets and ResNet architecture for image datasets. The resulting features are integrated into a unified classification model. Rigorous experimentation and evaluation resulted in high accuracies of 93%, 99%, and 95% for retinal fundus images, cirrhosis stages, and heart disease diagnostic predictions, respectively. The efficacy of the proposed method is demonstrated through a detailed analysis of F1-score, precision, and recall metrics. This study offers a comprehensive exploration of methodologies and experiments, providing in-depth knowledge of deep learning predictive analysis in electronic health records.
- Abstract(参考訳): 現代の医療において、患者のデータを保護するため、電子健康記録は貴重なリポジトリとなり、予測分析にディープラーニング技術を活用する大きな機会を生み出している。
網膜基底画像、硬変ステージ、心臓病診断予測は、多様なデータセットを分類するためのディープラーニング技術の統合によって有望な結果を示している。
本研究では,3つの異なるソースからデータを前処理することで,複数のデータセットを分類するための新しいディープラーニング予測分析フレームワークを提案する。
Residual NetworksとArtificial Neural Networksを組み合わせたハイブリッドディープラーニングモデルが提案され、心臓疾患、硬変、網膜疾患などの急性および慢性疾患を検出し、既存のモデルを上回っている。
データセットの準備には、分類データ変換、次元の縮小、データ合成の欠如といった側面が含まれる。
特徴抽出は分類データセットのスケーラ変換と画像データセットのResNetアーキテクチャを用いて効果的に実行される。
得られた特徴は統一された分類モデルに統合される。
厳密な実験と評価の結果,網膜基底像,肝硬変ステージ,心疾患診断予測では,93%,99%,95%の精度が得られた。
提案手法の有効性は,F1スコア,精度,リコール指標の詳細な解析を通じて実証される。
本研究は,電子健康記録における深層学習予測分析の深い知識を提供するため,方法論と実験を包括的に探求する。
関連論文リスト
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
トポロジカルデータ分析は、異なる色チャネルにわたるトポロジカルパターンの評価を通じて重要な情報を抽出することで、ユニークなアプローチを提供する。
卵巣癌と乳癌では, トポロジカルな特徴を取り入れることで, 腫瘍型の分化が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-13T12:24:13Z) - Enhancing Eye Disease Diagnosis with Deep Learning and Synthetic Data Augmentation [0.0]
本稿では,糖尿病網膜症の早期発見と管理を目的としたアンサンブル学習手法を提案する。
提案したモデルはAPTOSデータセット上でテストされ、以前のモデルと比較して検証精度(99%)の優位性を示している。
論文 参考訳(メタデータ) (2024-07-25T04:09:17Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
本研究は糖尿病網膜症(DR)の臨床的課題について考察する。
提案手法は、畳み込みニューラルネットワーク(CNN)を用いたトランスファーラーニングを利用して、単一の基礎写真を用いた自動DR検出を行う。
Jaccard、F1、リコール、精度、精度の高評価スコアは、網膜病理評価における診断能力を高めるモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-01-05T11:19:24Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - Bag of Tricks for Developing Diabetic Retinopathy Analysis Framework to
Overcome Data Scarcity [6.802798389355481]
糖尿病網膜症 (DR) 解析課題として, 病変分割, 画像品質評価, DRグレーディングについて検討した。
各タスクに対して,アンサンブル学習,データ強化,半教師付き学習を活用した堅牢な学習手法を導入する。
疑似ラベルの負の効果を低減するため,モデルの信頼度スコアに基づいて不確実な擬似ラベルを除外する信頼性の高い擬似ラベルを提案する。
論文 参考訳(メタデータ) (2022-10-18T03:25:00Z) - Transfer Learning for Retinal Vascular Disease Detection: A Pilot Study
with Diabetic Retinopathy and Retinopathy of Prematurity [10.447939250507654]
本稿では,網膜血管疾患の診断に特徴的類似性を活用することを目的としたトランスファーラーニング手法を提案する。
実験の結果,従来のImageNet-pretrained Transfer Learningアプローチでは,DR-pretrainedアプローチがすべての指標で支配的であったことが確認された。
論文 参考訳(メタデータ) (2022-01-04T17:14:42Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
糖尿病網膜症における訓練方法の違いによる影響を比較検討した。
本稿では,定量的性能,学習した特徴表現の統計,解釈可能性,画像歪みに対する頑健性など,さまざまな側面について検討する。
以上の結果から,ImageNet事前学習モデルでは,画像歪みに対する性能,一般化,堅牢性が著しく向上していることが示唆された。
論文 参考訳(メタデータ) (2021-06-25T08:32:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。