論文の概要: Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning
- arxiv url: http://arxiv.org/abs/2409.16721v2
- Date: Tue, 19 Nov 2024 07:01:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:34:00.847389
- Title: Grading and Anomaly Detection for Automated Retinal Image Analysis using Deep Learning
- Title(参考訳): ディープラーニングを用いた網膜自動画像解析のためのグラディングと異常検出
- Authors: Syed Mohd Faisal Malik, Md Tabrez Nafis, Mohd Abdul Ahad, Safdar Tanweer,
- Abstract要約: 本研究はPRISMA分析を用いた系統的な文献レビューを行い,62項目について検討した。
DR病変の検出に使用される多種多様なディープラーニング技術について論じる。
- 参考スコア(独自算出の注目度): 0.5999777817331317
- License:
- Abstract: The significant portion of diabetic patients was affected due to major blindness caused by Diabetic retinopathy (DR). For diabetic retinopathy, lesion segmentation, and detection the comprehensive examination is delved into the deep learning techniques application. The study conducted a systematic literature review using the PRISMA analysis and 62 articles has been investigated in the research. By including CNN-based models for DR grading, and feature fusion several deep-learning methodologies are explored during the study. For enhancing effectiveness in classification accuracy and robustness the data augmentation and ensemble learning strategies are scrutinized. By demonstrating the superior performance compared to individual models the efficacy of ensemble learning methods is investigated. The potential ensemble approaches in DR diagnosis are shown by the integration of multiple pre-trained networks with custom classifiers that yield high specificity. The diverse deep-learning techniques that are employed for detecting DR lesions are discussed within the diabetic retinopathy lesions segmentation and detection section. By emphasizing the requirement for continued research and integration into clinical practice deep learning shows promise for personalized healthcare and early detection of diabetics.
- Abstract(参考訳): 糖尿病患者は,糖尿病網膜症 (DR) による大失明を主訴に来院した。
糖尿病網膜症では, 病変の分節, 包括的検査が深層学習に応用される。
本研究はPRISMA分析を用いた系統的な文献レビューを行い,62項目について検討した。
DRグレーディングのためのCNNベースのモデルを含めることにより、いくつかの深層学習手法が研究中に検討されている。
分類精度とロバスト性の向上のために、データ強化とアンサンブル学習戦略を精査する。
個々のモデルと比較して優れた性能を示すことにより,アンサンブル学習の有効性について検討した。
DR診断における潜在的なアンサンブルアプローチは、複数のトレーニング済みネットワークと高い特異性をもたらすカスタム分類器の統合によって示される。
糖尿病性網膜症病変の分節と検出部において,DR病変の検出に使用される多種多様な深層学習技術について検討した。
臨床実践の深層学習への継続的な研究と統合の必要性を強調することで、パーソナライズされたヘルスケアと糖尿病の早期発見が期待できる。
関連論文リスト
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
本研究では,自己指導型学習と知識蒸留を用いた新しいハイブリッド学習モデルを提案する。
我々のアルゴリズムでは、自己教師型学習および知識蒸留モデルの中で初めて、テストデータセットがトレーニングデータセットよりも50%大きい。
類似の最先端モデルと比較すると,より高精度で効率的な表現空間が得られた。
論文 参考訳(メタデータ) (2024-10-01T15:19:16Z) - Distributed Federated Learning-Based Deep Learning Model for Privacy MRI Brain Tumor Detection [11.980634373191542]
分散トレーニングは、大規模な医用画像データセットの処理を容易にし、疾患診断の精度と効率を向上させる。
本稿では,データプライバシと効率的な疾患診断という2つの課題に対処するために,Federated Learning(FL)を活用した医用画像分類の革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:07:19Z) - Deep Learning-Based Brain Image Segmentation for Automated Tumour Detection [0.0]
目的は、最先端の畳み込みニューラルネットワーク(CNN)を、セグメント化のための脳MRIスキャンの大規模なデータセットに活用することである。
提案手法は,性能向上と一般化性向上のために前処理技術を適用した。
論文 参考訳(メタデータ) (2024-04-06T15:09:49Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - A Comparative Study of Graph Neural Networks for Shape Classification in
Neuroimaging [17.775145204666874]
ニューロイメージングにおける形状分類のための幾何学的深層学習の現状について概説する。
ノード機能としてFPFHを使用することで,GNNの性能が大幅に向上し,アウト・オブ・ディストリビューションデータへの一般化が期待できる。
以上の結果から,アルツハイマー病の分類を応用し,臨床的に有意な課題を確定した。
論文 参考訳(メタデータ) (2022-10-29T19:03:01Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
混合データ型と欠落値を特徴とする大規模臨床データセット分析のための半教師付き方法論を提案する。
この手法は、次元の減少、データの可視化、クラスタリング、特徴の選択と、部分的に順序付けられた観測列における測地距離(擬時)の定量化のタスクを同時に扱うことのできる弾性主グラフの適用に基づいている。
論文 参考訳(メタデータ) (2020-07-07T21:04:55Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。