Non-stationary BERT: Exploring Augmented IMU Data For Robust Human Activity Recognition
- URL: http://arxiv.org/abs/2409.16730v1
- Date: Wed, 25 Sep 2024 08:28:54 GMT
- Title: Non-stationary BERT: Exploring Augmented IMU Data For Robust Human Activity Recognition
- Authors: Ning Sun, Yufei Wang, Yuwei Zhang, Jixiang Wan, Shenyue Wang, Ping Liu, Xudong Zhang,
- Abstract summary: Human Activity Recognition (HAR) has gained great attention from researchers due to the popularity of mobile devices.
In this work, we collect a human activity recognition dataset called OPPOHAR consisting of phone IMU data.
We propose a novel light-weight network called Non-stationary BERT with a two-stage training method to achieve user-specific activity recognition.
- Score: 12.175145985669642
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Human Activity Recognition (HAR) has gained great attention from researchers due to the popularity of mobile devices and the need to observe users' daily activity data for better human-computer interaction. In this work, we collect a human activity recognition dataset called OPPOHAR consisting of phone IMU data. To facilitate the employment of HAR system in mobile phone and to achieve user-specific activity recognition, we propose a novel light-weight network called Non-stationary BERT with a two-stage training method. We also propose a simple yet effective data augmentation method to explore the deeper relationship between the accelerator and gyroscope data from the IMU. The network achieves the state-of-the-art performance testing on various activity recognition datasets and the data augmentation method demonstrates its wide applicability.
Related papers
- Multi-Channel Time-Series Person and Soft-Biometric Identification [65.83256210066787]
This work investigates person and soft-biometrics identification from recordings of humans performing different activities using deep architectures.
We evaluate the method on four datasets of multi-channel time-series human activity recognition (HAR)
Soft-biometric based attribute representation shows promising results and emphasis the necessity of larger datasets.
arXiv Detail & Related papers (2023-04-04T07:24:51Z) - Video-based Pose-Estimation Data as Source for Transfer Learning in
Human Activity Recognition [71.91734471596433]
Human Activity Recognition (HAR) using on-body devices identifies specific human actions in unconstrained environments.
Previous works demonstrated that transfer learning is a good strategy for addressing scenarios with scarce data.
This paper proposes using datasets intended for human-pose estimation as a source for transfer learning.
arXiv Detail & Related papers (2022-12-02T18:19:36Z) - HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly
Unlabeled Mobile Sensor Data [61.79595926825511]
Acquiring balanced datasets containing accurate activity labels requires humans to correctly annotate and potentially interfere with the subjects' normal activities in real-time.
We propose HAR-GCCN, a deep graph CNN model that leverages the correlation between chronologically adjacent sensor measurements to predict the correct labels for unclassified activities.
Har-GCCN shows superior performance relative to previously used baseline methods, improving classification accuracy by about 25% and up to 68% on different datasets.
arXiv Detail & Related papers (2022-03-07T01:23:46Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic.
We propose a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects.
We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.
arXiv Detail & Related papers (2021-12-22T23:35:20Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
We propose a human activity recognition (HAR) approach for the online prediction of physical movements.
We develop a HAR system containing monitoring software and a mobile application that collects accelerometer and gyroscope data.
Six incremental learning algorithms are employed and evaluated in this work and compared with several batch learning algorithms commonly used for developing offline HAR systems.
arXiv Detail & Related papers (2021-09-20T11:33:09Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Contrastive Predictive Coding for Human Activity Recognition [5.766384728949437]
We introduce the Contrastive Predictive Coding framework to human activity recognition, which captures the long-term temporal structure of sensor data streams.
CPC-based pre-training is self-supervised, and the resulting learned representations can be integrated into standard activity chains.
It leads to significantly improved recognition performance when only small amounts of labeled training data are available.
arXiv Detail & Related papers (2020-12-09T21:44:36Z) - Federated Learning with Heterogeneous Labels and Models for Mobile
Activity Monitoring [0.7106986689736827]
On-device Federated Learning proves to be an effective approach for distributed and collaborative machine learning.
We propose a framework for federated label-based aggregation, which leverages overlapping information gain across activities.
Empirical evaluation with the Heterogeneity Human Activity Recognition (HHAR) dataset on Raspberry Pi 2 indicates an average deterministic accuracy increase of at least 11.01%.
arXiv Detail & Related papers (2020-12-04T11:44:17Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z) - Classification of human activity recognition using smartphones [0.0]
Human activity recognition is possible on mobile devices by embedded sensors, which can be exploited to manage user behavior on mobile devices by predicting user activity.
To reach this aim, storing activity characteristics, Classification, and mapping them to a learning algorithm was studied.
In this study, we applied categorization through deep belief network to test and training data, which resulted in 98.25% correct diagnosis in training data and 93.01% in test data.
arXiv Detail & Related papers (2020-01-06T16:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.