論文の概要: Mitigating the Bias of Large Language Model Evaluation
- arxiv url: http://arxiv.org/abs/2409.16788v1
- Date: Wed, 25 Sep 2024 09:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 04:30:14.884359
- Title: Mitigating the Bias of Large Language Model Evaluation
- Title(参考訳): 大規模言語モデル評価のバイアスを緩和する
- Authors: Hongli Zhou, Hui Huang, Yunfei Long, Bing Xu, Conghui Zhu, Hailong Cao, Muyun Yang, Tiejun Zhao,
- Abstract要約: LLM-as-a-Judgeのバイアスに関する系統的研究を提案する。
クローズドソース・ジャッジモデルでは、表面品質の重要性を緩和するためにキャリブレーションを適用する。
オープンソース・ジャッジ・モデルでは, 対照的な学習によってバイアスを軽減し, 学習から逸脱するが, 表面品質が向上する負のサンプルをキュレートする。
- 参考スコア(独自算出の注目度): 30.67730115141905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, there has been a trend of evaluating the Large Language Model (LLM) quality in the flavor of LLM-as-a-Judge, namely leveraging another LLM to evaluate the current output quality. However, existing judges are proven to be biased, namely they would favor answers which present better superficial quality (such as verbosity, fluency) while ignoring the instruction following ability. In this work, we propose systematic research about the bias of LLM-as-a-Judge. Specifically, for closed-source judge models, we apply calibration to mitigate the significance of superficial quality, both on probability level and prompt level. For open-source judge models, we propose to mitigate the bias by contrastive training, with curated negative samples that deviate from instruction but present better superficial quality. We apply our methods on the bias evaluation benchmark, and experiment results show our methods mitigate the bias by a large margin while maintaining a satisfactory evaluation accuracy.
- Abstract(参考訳): 近年,LLM-as-a-JudgeのフレーバーにおけるLLM(Large Language Model)の品質を評価する傾向にある。
しかし、既存の裁判官は偏見があることが証明されている。つまり、彼らは、より良い表面的品質(冗長性、流布性など)を示す回答を好んでおり、その一方で、次の能力の指示を無視している。
本研究では, LLM-as-a-Judgeのバイアスに関する系統的研究を提案する。
具体的には、クローズドソース判定モデルにおいて、確率レベルとプロンプトレベルの両方において、表面品質の重要性を緩和するためにキャリブレーションを適用する。
オープンソース・ジャッジ・モデルでは, 対照的な学習によってバイアスを軽減し, 学習から逸脱するが, 表面品質が向上する負のサンプルをキュレートする。
本手法をバイアス評価ベンチマークに適用し, 実験結果から, 良好な評価精度を維持しつつ, バイアスを大きなマージンで軽減することを示す。
関連論文リスト
- Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
多くの領域で優れているにもかかわらず、潜在的な問題は未解決のままであり、その信頼性と実用性の範囲を損なう。
提案手法は, LLM-as-a-Judgeにおける各種類のバイアスを定量化し, 解析する自動バイアス定量化フレームワークである。
当社の作業は、これらの問題に対処するステークホルダの必要性を強調し、LLM-as-a-Judgeアプリケーションで注意を喚起します。
論文 参考訳(メタデータ) (2024-10-03T17:53:30Z) - Beyond Performance: Quantifying and Mitigating Label Bias in LLMs [8.77694178599322]
モデル予測におけるラベルバイアスを定量化するための様々なアプローチを評価する。
本研究により, 脱バイアス前後のモデルに有意なラベルバイアスが認められた。
数発のプロンプトに適したラベルバイアス校正法を提案する。
論文 参考訳(メタデータ) (2024-05-04T19:53:03Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
本稿では,新しい評価手法SQC-Scoreを提案する。
主観的質問訂正の原則に着想を得て,新しい評価手法SQC-Scoreを提案する。
3つの情報抽出タスクの結果から,SQC-Scoreは基準値よりもアノテータの方が好ましいことが示された。
論文 参考訳(メタデータ) (2024-04-04T15:36:53Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
大規模言語モデル(LLM)は、生成された自然言語の品質を評価する上で有望な能力を示している。
LLMは依然として評価のバイアスを示しており、人間の評価と整合したコヒーレントな評価を生成するのに苦労することが多い。
Pairwise-preference Search (PairS)は、LLMを用いてペア比較を行い、候補テキストを効率よくランク付けする不確実性誘導探索手法である。
論文 参考訳(メタデータ) (2024-03-25T17:11:28Z) - Likelihood-based Mitigation of Evaluation Bias in Large Language Models [37.07596663793111]
大規模言語モデル(LLM)は、自然言語生成タスクを自動メトリクスとして評価するために広く使われている。
LLMが評価に使用される場合、確率バイアスが存在する可能性がある。
論文 参考訳(メタデータ) (2024-02-25T04:52:02Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Benchmarking Cognitive Biases in Large Language Models as Evaluators [16.845939677403287]
大規模言語モデル(LLM)は、簡単なプロンプトと文脈内学習を備えた自動評価器として有効であることが示されている。
我々は,LLMの認知バイアスベンチマークを導入したランキングアウトプットの品質を評価対象として評価する。
LLMはテキスト品質評価器であり、バイアスベンチマークに強い指標を示す。
論文 参考訳(メタデータ) (2023-09-29T06:53:10Z) - Calibrating LLM-Based Evaluator [92.17397504834825]
マルチステージで勾配のないアプローチであるAutoCalibrateを提案し,LLMに基づく評価器を人間の好みに合わせて調整・調整する。
人間の嗜好を明示的にモデル化する代わりに、まず暗黙的に人間のラベルに含めます。
複数のテキスト品質評価データセットに関する実験は、校正による専門家評価との相関性を大幅に改善したことを示す。
論文 参考訳(メタデータ) (2023-09-23T08:46:11Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
本研究では,大規模言語モデル(LLM)とともに,クラウドソースおよびエキスパートアノテータの挙動について検討する。
この結果から, 事実的誤りに対する回答は, 短すぎる, 文法的誤りを含む回答よりも好意的に評価され, 評価過程の偏りが示唆された。
評価面を1つのスコアにマージするのではなく,複数の次元にまたがるマシン生成テキストを独立に評価することを提案する。
論文 参考訳(メタデータ) (2023-07-06T14:42:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。