Game4Loc: A UAV Geo-Localization Benchmark from Game Data
- URL: http://arxiv.org/abs/2409.16925v1
- Date: Wed, 25 Sep 2024 13:33:28 GMT
- Title: Game4Loc: A UAV Geo-Localization Benchmark from Game Data
- Authors: Yuxiang Ji, Boyong He, Zhuoyue Tan, Liaoni Wu,
- Abstract summary: We introduce a more practical UAV geo-localization task including partial matches of cross-view paired data.
Experiments demonstrate the effectiveness of our data and training method for UAV geo-localization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The vision-based geo-localization technology for UAV, serving as a secondary source of GPS information in addition to the global navigation satellite systems (GNSS), can still operate independently in the GPS-denied environment. Recent deep learning based methods attribute this as the task of image matching and retrieval. By retrieving drone-view images in geo-tagged satellite image database, approximate localization information can be obtained. However, due to high costs and privacy concerns, it is usually difficult to obtain large quantities of drone-view images from a continuous area. Existing drone-view datasets are mostly composed of small-scale aerial photography with a strong assumption that there exists a perfect one-to-one aligned reference image for any query, leaving a significant gap from the practical localization scenario. In this work, we construct a large-range contiguous area UAV geo-localization dataset named GTA-UAV, featuring multiple flight altitudes, attitudes, scenes, and targets using modern computer games. Based on this dataset, we introduce a more practical UAV geo-localization task including partial matches of cross-view paired data, and expand the image-level retrieval to the actual localization in terms of distance (meters). For the construction of drone-view and satellite-view pairs, we adopt a weight-based contrastive learning approach, which allows for effective learning while avoiding additional post-processing matching steps. Experiments demonstrate the effectiveness of our data and training method for UAV geo-localization, as well as the generalization capabilities to real-world scenarios.
Related papers
- GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - UAV-VisLoc: A Large-scale Dataset for UAV Visual Localization [20.37586403749362]
We present a large-scale dataset, UAV-VisLoc, to facilitate the UAV visual localization task.
Our dataset includes 6,742 drone images and 11 satellite maps, with metadata such as latitude, longitude, altitude, and capture date.
arXiv Detail & Related papers (2024-05-20T10:24:10Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
We present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives.
MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes.
This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets.
arXiv Detail & Related papers (2023-12-07T18:59:14Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Orientation-Guided Contrastive Learning for UAV-View Geo-Localisation [0.0]
We present an orientation-guided training framework for UAV-view geo-localisation.
We experimentally demonstrate that this prediction supports the training and outperforms previous approaches.
We achieve state-of-the-art results on both the University-1652 and University-160k datasets.
arXiv Detail & Related papers (2023-08-02T07:32:32Z) - A Gis Aided Approach for Geolocalizing an Unmanned Aerial System Using
Deep Learning [0.4297070083645048]
We propose an alternative approach to geolocalize a UAS when GPS signal is degraded or denied.
Considering UAS has a downward-looking camera on its platform that can acquire real-time images as the platform flies, we apply modern deep learning techniques to achieve geolocalization.
We extract GIS information from OpenStreetMap (OSM) to semantically segment matched features into building and terrain classes.
arXiv Detail & Related papers (2022-08-25T17:51:15Z) - VPAIR -- Aerial Visual Place Recognition and Localization in Large-scale
Outdoor Environments [49.82314641876602]
We present a new dataset named VPAIR.
The dataset was recorded on board a light aircraft flying at an altitude of more than 300 meters above ground.
The dataset covers a more than one hundred kilometers long trajectory over various types of challenging landscapes.
arXiv Detail & Related papers (2022-05-23T18:50:08Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
We propose a novel method for geo-tracking in outdoor environments by registering a vehicle's sensor information with aerial imagery of an unseen target region.
We train a model in a metric learning setting to extract visual features from ground and aerial images.
Our method is the first to utilize on-board cameras in an end-to-end differentiable model for metric self-localization on unseen orthophotos.
arXiv Detail & Related papers (2022-03-07T12:25:44Z) - Real-time Geo-localization Using Satellite Imagery and Topography for
Unmanned Aerial Vehicles [18.71806336611299]
We propose a framework that is reliable in changing scenes and pragmatic for lightweight embedded systems on UAVs.
The framework is comprised of two stages: offline database preparation and online inference.
We present field experiments of image-based localization on two different UAV platforms to validate our results.
arXiv Detail & Related papers (2021-08-07T01:47:19Z) - University-1652: A Multi-view Multi-source Benchmark for Drone-based
Geo-localization [87.74121935246937]
We introduce a new multi-view benchmark for drone-based geo-localization, named University-1652.
University-1652 contains data from three platforms, i.e., synthetic drones, satellites and ground cameras of 1,652 university buildings around the world.
Experiments show that University-1652 helps the model to learn the viewpoint-invariant features and also has good generalization ability in the real-world scenario.
arXiv Detail & Related papers (2020-02-27T15:24:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.