Ctrl-GenAug: Controllable Generative Augmentation for Medical Sequence Classification
- URL: http://arxiv.org/abs/2409.17091v1
- Date: Wed, 25 Sep 2024 16:58:19 GMT
- Title: Ctrl-GenAug: Controllable Generative Augmentation for Medical Sequence Classification
- Authors: Xinrui Zhou, Yuhao Huang, Haoran Dou, Shijing Chen, Ao Chang, Jia Liu, Weiran Long, Jian Zheng, Erjiao Xu, Jie Ren, Ruobing Huang, Jun Cheng, Wufeng Xue, Dong Ni,
- Abstract summary: Ctrl-GenAug is a novel and general generative augmentation framework.
It enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples.
- Score: 16.02675888386905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the medical field, the limited availability of large-scale datasets and labor-intensive annotation processes hinder the performance of deep models. Diffusion-based generative augmentation approaches present a promising solution to this issue, having been proven effective in advancing downstream medical recognition tasks. Nevertheless, existing works lack sufficient semantic and sequential steerability for challenging video/3D sequence generation, and neglect quality control of noisy synthesized samples, resulting in unreliable synthetic databases and severely limiting the performance of downstream tasks. In this work, we present Ctrl-GenAug, a novel and general generative augmentation framework that enables highly semantic- and sequential-customized sequence synthesis and suppresses incorrectly synthesized samples, to aid medical sequence classification. Specifically, we first design a multimodal conditions-guided sequence generator for controllably synthesizing diagnosis-promotive samples. A sequential augmentation module is integrated to enhance the temporal/stereoscopic coherence of generated samples. Then, we propose a noisy synthetic data filter to suppress unreliable cases at semantic and sequential levels. Extensive experiments on 3 medical datasets, using 11 networks trained on 3 paradigms, comprehensively analyze the effectiveness and generality of Ctrl-GenAug, particularly in underrepresented high-risk populations and out-domain conditions.
Related papers
- Generating Clinically Realistic EHR Data via a Hierarchy- and Semantics-Guided Transformer [0.0]
We propose the Hierarchy- and Semantics-Guided Transformer (HiSGT), a novel framework for the generative process.
HiSGT constructs a hierarchical graph to encode parent-child and sibling relationships among clinical codes and employs a graph neural network to derive hierarchy-aware embeddings.
Experiments on the MIMIC-III and MIMIC-IV datasets demonstrate that HiSGT significantly improves the statistical alignment of synthetic data with real patient records.
arXiv Detail & Related papers (2025-02-28T05:06:04Z) - Generating on Generated: An Approach Towards Self-Evolving Diffusion Models [58.05857658085845]
Recursive Self-Improvement (RSI) enables intelligence systems to autonomously refine their capabilities.
This paper explores the application of RSI in text-to-image diffusion models, addressing the challenge of training collapse caused by synthetic data.
arXiv Detail & Related papers (2025-02-14T07:41:47Z) - GAUDA: Generative Adaptive Uncertainty-guided Diffusion-based Augmentation for Surgical Segmentation [1.0808810256442274]
We learn semantically comprehensive yet compact latent representations of the (image, mask) space.
We show that our approach can effectively synthesise unseen high-quality paired segmentation data of remarkable semantic coherence.
arXiv Detail & Related papers (2025-01-18T16:40:53Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - MTS-DVGAN: Anomaly Detection in Cyber-Physical Systems using a Dual
Variational Generative Adversarial Network [7.889342625283858]
Deep generative models are promising in detecting novel cyber-physical attacks, mitigating the vulnerability of Cyber-physical systems (CPSs) without relying on labeled information.
This article proposes a novel unsupervised dual variational generative adversarial model named MST-DVGAN.
The central concept is to enhance the model's discriminative capability by widening the distinction between reconstructed abnormal samples and their normal counterparts.
arXiv Detail & Related papers (2023-11-04T11:19:03Z) - Generalizing Medical Image Representations via Quaternion Wavelet Networks [9.836302410524842]
We introduce a novel, generalizable, data- and task-agnostic framework able to extract salient features from medical images.
The proposed quaternion wavelet network (QUAVE) can be easily integrated with any pre-existing medical image analysis or synthesis task.
arXiv Detail & Related papers (2023-10-16T09:34:06Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - METGAN: Generative Tumour Inpainting and Modality Synthesis in Light
Sheet Microscopy [4.872960046536882]
We introduce a novel generative method which leverages real anatomical information to generate realistic image-label pairs of tumours.
We construct a dual-pathway generator, for the anatomical image and label, trained in a cycle-consistent setup, constrained by an independent, pretrained segmentor.
The generated images yield significant quantitative improvement compared to existing methods.
arXiv Detail & Related papers (2021-04-22T11:18:17Z) - Conditional Hybrid GAN for Sequence Generation [56.67961004064029]
We propose a novel conditional hybrid GAN (C-Hybrid-GAN) to solve this issue.
We exploit the Gumbel-Softmax technique to approximate the distribution of discrete-valued sequences.
We demonstrate that the proposed C-Hybrid-GAN outperforms the existing methods in context-conditioned discrete-valued sequence generation.
arXiv Detail & Related papers (2020-09-18T03:52:55Z) - SynCGAN: Using learnable class specific priors to generate synthetic
data for improving classifier performance on cytological images [3.0245533608670865]
We propose a conditional GAN for the generation of patho-realistic samples for annotated image.
We have observed that augmentation of data using the proposed pipeline called "SynCGAN" improves the performance of state of the art classifiers such as ResNet-152, DenseNet-161, Inception-V3 significantly.
arXiv Detail & Related papers (2020-03-12T11:23:23Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.