Classification of Gleason Grading in Prostate Cancer Histopathology Images Using Deep Learning Techniques: YOLO, Vision Transformers, and Vision Mamba
- URL: http://arxiv.org/abs/2409.17122v2
- Date: Wed, 2 Oct 2024 18:15:25 GMT
- Title: Classification of Gleason Grading in Prostate Cancer Histopathology Images Using Deep Learning Techniques: YOLO, Vision Transformers, and Vision Mamba
- Authors: Amin Malekmohammadi, Ali Badiezadeh, Seyed Mostafa Mirhassani, Parisa Gifani, Majid Vafaeezadeh,
- Abstract summary: This study evaluates and compares the effectiveness of three deep learning methodologies, YOLO, Vision Transformers, and Vision Mamba, in accurately classifying Gleason grades from histopathology images.
Vision Mamba emerges as the most effective model for Gleason grade classification in histopathology images, offering a balance between accuracy and computational efficiency.
- Score: 0.6116681488656472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Prostate cancer ranks among the leading health issues impacting men, with the Gleason scoring system serving as the primary method for diagnosis and prognosis. This system relies on expert pathologists to evaluate samples of prostate tissue and assign a Gleason grade, a task that requires significant time and manual effort. To address this challenge, artificial intelligence (AI) solutions have been explored to automate the grading process. In light of these challenges, this study evaluates and compares the effectiveness of three deep learning methodologies, YOLO, Vision Transformers, and Vision Mamba, in accurately classifying Gleason grades from histopathology images. The goal is to enhance diagnostic precision and efficiency in prostate cancer management. This study utilized two publicly available datasets, Gleason2019 and SICAPv2, to train and test the performance of YOLO, Vision Transformers, and Vision Mamba models. Each model was assessed based on its ability to classify Gleason grades accurately, considering metrics such as false positive rate, false negative rate, precision, and recall. The study also examined the computational efficiency and applicability of each method in a clinical setting. Vision Mamba demonstrated superior performance across all metrics, achieving high precision and recall rates while minimizing false positives and negatives. YOLO showed promise in terms of speed and efficiency, particularly beneficial for real-time analysis. Vision Transformers excelled in capturing long-range dependencies within images, although they presented higher computational complexity compared to the other models. Vision Mamba emerges as the most effective model for Gleason grade classification in histopathology images, offering a balance between accuracy and computational efficiency.
Related papers
- SemiHVision: Enhancing Medical Multimodal Models with a Semi-Human Annotated Dataset and Fine-Tuned Instruction Generation [13.672776832197918]
Multimodal large language models (MLLMs) have made significant strides, yet they face challenges in the medical domain due to limited specialized knowledge.
We seek to address this gap at various stages of the end-to-end learning pipeline, including data collection, model fine-tuning, and evaluation.
arXiv Detail & Related papers (2024-10-19T02:35:35Z) - Segmentation Strategies in Deep Learning for Prostate Cancer Diagnosis: A Comparative Study of Mamba, SAM, and YOLO [0.6116681488656472]
This study presents a comparative analysis of three deep learning-based methods, Mamba, SAM, and YOLO, for segmenting prostate cancer histopathology images.
We evaluated the performance of these models on two comprehensive datasets, Gleason 2019 and SICAPv2, using Dice score, precision, and recall metrics.
The H-vmunet model's advanced architecture, which integrates high-order visual state spaces and 2D-selective-scan operations, enables efficient and sensitive lesion detection.
arXiv Detail & Related papers (2024-09-24T16:04:29Z) - Automated Detection of Myopic Maculopathy in MMAC 2023: Achievements in
Classification, Segmentation, and Spherical Equivalent Prediction [6.993091116816899]
Myopic macular degeneration is the primary cause of vision loss in individuals with pathological myopia.
Early detection and prompt treatment are crucial in preventing vision impairment due to myopic maculopathy.
This was the focus of the Myopic Maculopathy Analysis Challenge (MMAC)
arXiv Detail & Related papers (2024-01-08T00:26:21Z) - GraVIS: Grouping Augmented Views from Independent Sources for
Dermatology Analysis [52.04899592688968]
We propose GraVIS, which is specifically optimized for learning self-supervised features from dermatology images.
GraVIS significantly outperforms its transfer learning and self-supervised learning counterparts in both lesion segmentation and disease classification tasks.
arXiv Detail & Related papers (2023-01-11T11:38:37Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Performance or Trust? Why Not Both. Deep AUC Maximization with
Self-Supervised Learning for COVID-19 Chest X-ray Classifications [72.52228843498193]
In training deep learning models, a compromise often must be made between performance and trust.
In this work, we integrate a new surrogate loss with self-supervised learning for computer-aided screening of COVID-19 patients.
arXiv Detail & Related papers (2021-12-14T21:16:52Z) - OncoPetNet: A Deep Learning based AI system for mitotic figure counting
on H&E stained whole slide digital images in a large veterinary diagnostic
lab setting [47.38796928990688]
Multiple state-of-the-art deep learning techniques for histopathology image classification and mitotic figure detection were used in the development of OncoPetNet.
The proposed system, demonstrated significantly improved mitotic counting performance for 41 cancer cases across 14 cancer types compared to human expert baselines.
In deployment, an effective 0.27 min/slide inference was achieved in a high throughput veterinary diagnostic service across 2 centers processing 3,323 digital whole slide images daily.
arXiv Detail & Related papers (2021-08-17T20:01:33Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Self-learning for weakly supervised Gleason grading of local patterns [6.97280833203187]
We propose a weakly-supervised deep-learning model, based on self-learning CNNs, to accurately perform both, grading of patch-level patterns and biopsy-level scoring.
We empirically demonstrate that our approach outperforms its supervised counterpart on patch-level Gleason grading by a large margin.
arXiv Detail & Related papers (2021-05-21T15:39:50Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
We propose a convolutional neural network (CNN)-based automatic classification method for accurate grading of prostate cancer (PCa) using whole slide histopathology images.
A data augmentation method named Patch-Based Image Reconstruction (PBIR) was proposed to reduce the high resolution and increase the diversity of WSIs.
A distribution correction module was developed to enhance the adaption of pretrained model to the target dataset.
arXiv Detail & Related papers (2020-11-29T06:42:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.