Segmentation Strategies in Deep Learning for Prostate Cancer Diagnosis: A Comparative Study of Mamba, SAM, and YOLO
- URL: http://arxiv.org/abs/2409.16205v2
- Date: Wed, 2 Oct 2024 18:18:16 GMT
- Title: Segmentation Strategies in Deep Learning for Prostate Cancer Diagnosis: A Comparative Study of Mamba, SAM, and YOLO
- Authors: Ali Badiezadeh, Amin Malekmohammadi, Seyed Mostafa Mirhassani, Parisa Gifani, Majid Vafaeezadeh,
- Abstract summary: This study presents a comparative analysis of three deep learning-based methods, Mamba, SAM, and YOLO, for segmenting prostate cancer histopathology images.
We evaluated the performance of these models on two comprehensive datasets, Gleason 2019 and SICAPv2, using Dice score, precision, and recall metrics.
The H-vmunet model's advanced architecture, which integrates high-order visual state spaces and 2D-selective-scan operations, enables efficient and sensitive lesion detection.
- Score: 0.6116681488656472
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate segmentation of prostate cancer histopathology images is crucial for diagnosis and treatment planning. This study presents a comparative analysis of three deep learning-based methods, Mamba, SAM, and YOLO, for segmenting prostate cancer histopathology images. We evaluated the performance of these models on two comprehensive datasets, Gleason 2019 and SICAPv2, using Dice score, precision, and recall metrics. Our results show that the High-order Vision Mamba UNet (H-vmunet) model outperforms the other two models, achieving the highest scores across all metrics on both datasets. The H-vmunet model's advanced architecture, which integrates high-order visual state spaces and 2D-selective-scan operations, enables efficient and sensitive lesion detection across different scales. Our study demonstrates the potential of the H-vmunet model for clinical applications and highlights the importance of robust validation and comparison of deep learning-based methods for medical image analysis. The findings of this study contribute to the development of accurate and reliable computer-aided diagnosis systems for prostate cancer. The code is available at http://github.com/alibdz/prostate-segmentation.
Related papers
- Enhancing Transformer-Based Segmentation for Breast Cancer Diagnosis
using Auto-Augmentation and Search Optimisation Techniques [3.495246564946556]
This paper introduces a methodology that combines automated image augmentation selection (RandAugment) with search strategies (Tree-based Parzen Estimator)
We empirically validate our approach on breast cancer histology slides, focusing on the segmentation of cancer cells.
Our results show that the proposed methodology leads to segmentation models that are more resilient to variations in histology slides.
arXiv Detail & Related papers (2023-11-18T13:08:09Z) - Histopathologic Cancer Detection [0.0]
This work uses the PatchCamelyon benchmark datasets and trains them in a multi-layer perceptron and convolution model to observe the model's performance in terms of precision Recall, F1 Score, Accuracy, and AUC Score.
Also, this paper introduced ResNet50 and InceptionNet models with data augmentation, where ResNet50 is able to beat the state-of-the-art model.
arXiv Detail & Related papers (2023-11-13T19:51:46Z) - Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification [0.0]
Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment.
Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians.
This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa.
arXiv Detail & Related papers (2023-10-09T03:00:15Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Federated Learning with Research Prototypes for Multi-Center MRI-based
Detection of Prostate Cancer with Diverse Histopathology [3.8613414331251423]
We introduce a flexible federated learning framework for cross-site training, validation, and evaluation of deep prostate cancer detection algorithms.
Our results show increases in prostate cancer detection and classification accuracy using a specialized neural network model and diverse prostate biopsy data.
We open-source our FLtools system, which can be easily adapted to other deep learning projects for medical imaging.
arXiv Detail & Related papers (2022-06-11T21:28:17Z) - Metastatic Cancer Outcome Prediction with Injective Multiple Instance
Pooling [1.0965065178451103]
We process two public datasets to set up a benchmark cohort of 341 patient in total for studying outcome prediction of metastatic cancer.
We propose two injective multiple instance pooling functions that are better suited to outcome prediction.
Our results show that multiple instance learning with injective pooling functions can achieve state-of-the-art performance in the non-small-cell lung cancer CT and head and neck CT outcome prediction benchmarking tasks.
arXiv Detail & Related papers (2022-03-09T16:58:03Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - SAG-GAN: Semi-Supervised Attention-Guided GANs for Data Augmentation on
Medical Images [47.35184075381965]
We present a data augmentation method for generating synthetic medical images using cycle-consistency Generative Adversarial Networks (GANs)
The proposed GANs-based model can generate a tumor image from a normal image, and in turn, it can also generate a normal image from a tumor image.
We train the classification model using real images with classic data augmentation methods and classification models using synthetic images.
arXiv Detail & Related papers (2020-11-15T14:01:24Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.