論文の概要: Quantum Implicit Neural Compression
- arxiv url: http://arxiv.org/abs/2412.19828v1
- Date: Thu, 19 Dec 2024 13:41:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 09:06:42.284909
- Title: Quantum Implicit Neural Compression
- Title(参考訳): 量子暗黙的ニューラル圧縮
- Authors: Takuya Fujihashi, Toshiaki Koike-Akino,
- Abstract要約: データ圧縮に量子ニューラルネットワークの指数的にリッチな表現性を利用する量子INRを導入する。
いくつかのベンチマークデータセットを用いて評価したところ、提案したquINRベースの圧縮により、画像圧縮の速度歪み性能が向上することが示された。
- 参考スコア(独自算出の注目度): 11.028123436097616
- License:
- Abstract: Signal compression based on implicit neural representation (INR) is an emerging technique to represent multimedia signals with a small number of bits. While INR-based signal compression achieves high-quality reconstruction for relatively low-resolution signals, the accuracy of high-frequency details is significantly degraded with a small model. To improve the compression efficiency of INR, we introduce quantum INR (quINR), which leverages the exponentially rich expressivity of quantum neural networks for data compression. Evaluations using some benchmark datasets show that the proposed quINR-based compression could improve rate-distortion performance in image compression compared with traditional codecs and classic INR-based coding methods, up to 1.2dB gain.
- Abstract(参考訳): 暗黙的ニューラル表現(INR)に基づく信号圧縮は、少数のビットでマルチメディア信号を表現するための新興技術である。
INRに基づく信号圧縮は比較的低解像度の信号に対して高品質な再構成を実現するが、高周波の詳細の精度は小さなモデルで大幅に低下する。
InRの圧縮効率を向上させるために、データ圧縮に量子ニューラルネットワークの指数的にリッチな表現性を利用する量子INR(quINR)を導入する。
いくつかのベンチマークデータセットを用いて評価したところ、提案したquINRベースの圧縮は、従来のコーデックやINRベースの符号化手法と比較して、画像圧縮の速度歪み性能を最大1.2dB向上させる可能性がある。
関連論文リスト
- Streaming Neural Images [56.41827271721955]
Inlicit Neural Representations (INR) は信号表現の新しいパラダイムであり、画像圧縮にかなりの関心を集めている。
本研究では,INRの計算コスト,不安定な性能,堅牢性などの限界要因について検討する。
論文 参考訳(メタデータ) (2024-09-25T17:51:20Z) - UniCompress: Enhancing Multi-Data Medical Image Compression with Knowledge Distillation [59.3877309501938]
Inlicit Neural Representation (INR) ネットワークは、その柔軟な圧縮比のため、顕著な汎用性を示している。
周波数領域情報を含むコードブックをINRネットワークへの事前入力として導入する。
これにより、INRの表現力が向上し、異なる画像ブロックに対して特異な条件付けが提供される。
論文 参考訳(メタデータ) (2024-05-27T05:52:13Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - SINCO: A Novel structural regularizer for image compression using
implicit neural representations [10.251120382395332]
Inlicit Neural representations (INR) は、画像圧縮のためのディープラーニング(DL)ベースのソリューションとして最近提案されている。
本稿では、画像圧縮のための新しいINR法として、INR圧縮(SINCO)の構造正則化を提案する。
論文 参考訳(メタデータ) (2022-10-26T18:35:54Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
本稿では,エンコーダとデコーダの両端に内在するニューラル表現を強化することで,符号化性能の向上を図るシステムを提案する。
実験により,提案手法はJPEGに対する速度歪み性能を,様々な品質指標で改善することを示した。
論文 参考訳(メタデータ) (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - A GAN-based Tunable Image Compression System [13.76136694287327]
本稿では、GAN(Generative Adversarial Network)を用いてコンテンツベースの圧縮を再考し、重要でない領域を再構築する。
モデルを再トレーニングすることなく、特定の圧縮比に画像を圧縮するチューナブル圧縮スキームも提案する。
論文 参考訳(メタデータ) (2020-01-18T02:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。