論文の概要: Targeted Neural Architectures in Multi-Objective Frameworks for Complete Glioma Characterization from Multimodal MRI
- arxiv url: http://arxiv.org/abs/2409.17273v3
- Date: Tue, 18 Mar 2025 15:56:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-19 18:44:18.393134
- Title: Targeted Neural Architectures in Multi-Objective Frameworks for Complete Glioma Characterization from Multimodal MRI
- Title(参考訳): マルチモーダルMRIによる完全グリオーマ評価のための多目的フレームワークにおけるターゲット型ニューラルアーキテクチャ
- Authors: Shravan Venkatraman, Pandiyaraju V, Abeshek A, Aravintakshan S A, Pavan Kumar S, Kannan A, Madhan S,
- Abstract要約: 脳腫瘍は認知障害、運動機能障害、感覚障害などの神経学的障害を引き起こす。
深層学習(DL)と人工知能(AI)は、MRI(MRI)スキャンを用いて早期診断の医師を支援するためにますます利用されている。
本研究は、これらのグリオーマのグレードの局在化、セグメント化、分類が可能な多目的フレームワーク内のターゲット型ニューラルネットワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain tumors result from abnormal cell growth in brain tissue. If undiagnosed, they cause neurological deficits, including cognitive impairment, motor dysfunction, and sensory loss. As tumors grow, intracranial pressure increases, potentially leading to fatal complications such as brain herniation. Early diagnosis and treatment are crucial to controlling these effects and slowing tumor progression. Deep learning (DL) and artificial intelligence (AI) are increasingly used to assist doctors in early diagnosis through magnetic resonance imaging (MRI) scans. Our research proposes targeted neural architectures within multi-objective frameworks that can localize, segment, and classify the grade of these gliomas from multimodal MRI images to solve this critical issue. Our localization framework utilizes a targeted architecture that enhances the LinkNet framework with an encoder inspired by VGG19 for better multimodal feature extraction from the tumor along with spatial and graph attention mechanisms that sharpen feature focus and inter-feature relationships. For the segmentation objective, we deployed a specialized framework using the SeResNet101 CNN model as the encoder backbone integrated into the LinkNet architecture, achieving an IoU Score of 96%. The classification objective is addressed through a distinct framework implemented by combining the SeResNet152 feature extractor with Adaptive Boosting classifier, reaching an accuracy of 98.53%. Our multi-objective approach with targeted neural architectures demonstrated promising results for complete glioma characterization, with the potential to advance medical AI by enabling early diagnosis and providing more accurate treatment options for patients.
- Abstract(参考訳): 脳腫瘍は、脳組織の異常な細胞増殖に起因する。
診断されていない場合、認知障害、運動機能障害、感覚障害などの神経学的障害を引き起こす。
腫瘍が大きくなると頭蓋内圧が上昇し、脳ヘルニアなどの致命的な合併症を引き起こす可能性がある。
早期診断と治療は、これらの効果を制御し、腫瘍の進行を遅らせるために重要である。
深層学習(DL)と人工知能(AI)は、MRI(MRI)スキャンを用いて早期診断の医師を支援するためにますます利用されている。
本研究は,マルチモーダルMRI画像からこれらのグリオーマのグレードをローカライズし,セグメンテーションし,分類できる多目的フレームワーク内のターゲット型ニューラルネットワークを提案する。
我々のローカライゼーションフレームワークは、VGG19にインスパイアされたエンコーダでLinkNetフレームワークを強化し、腫瘍からのマルチモーダル特徴抽出と、特徴焦点と機能間関係を鋭くする空間的およびグラフ的注意機構を活用する。
セグメンテーションの目的のために、私たちは、LinkNetアーキテクチャに統合されたエンコーダバックボーンとしてSeResNet101 CNNモデルを使用して、特別なフレームワークをデプロイし、IoUスコアの96%を達成した。
分類の目的は、SeResNet152特徴抽出器とAdaptive Boosting分類器を組み合わせて実装された、98.53%の精度で対処される。
対象とする神経アーキテクチャを用いた多目的アプローチは,早期診断とより正確な治療オプションを提供することで,医療用AIを進歩させる可能性を秘め,グリオーマの完全な特徴付けに有望な結果を示した。
関連論文リスト
- Light Weight CNN for classification of Brain Tumors from MRI Images [0.0]
本研究では,脳腫瘍のマルチクラス分類のための畳み込みニューラルネットワーク(CNN)に基づくアプローチを提案する。
グリオーマ,髄膜腫,下垂体腫瘍,腫瘍の4つの分類に分類したMRI画像を含む公開データセットを用いて検討した。
実験により, 本モデルが98.78%の分類精度を達成し, 臨床現場での診断支援の可能性を示した。
論文 参考訳(メタデータ) (2025-04-29T21:45:11Z) - Tumor Location-weighted MRI-Report Contrastive Learning: A Framework for Improving the Explainability of Pediatric Brain Tumor Diagnosis [0.0]
我々は3次元脳MRIスキャンと放射線検査で多モードCLアーキテクチャーを訓練し、情報的MRI表現を学習する。
次に,学習画像表現を応用して,小児の下等度グリオーマの遺伝マーカー分類の妥当性と性能を向上する。
論文 参考訳(メタデータ) (2024-11-01T14:14:17Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
脳腫瘍のセグメンテーションは、医療画像解析において重要な課題であり、脳腫瘍患者の診断と治療計画を支援する。
様々な深層学習技術がこの分野で大きな進歩を遂げてきたが、脳腫瘍形態の複雑で変動的な性質のため、精度の面ではまだ限界に直面している。
本稿では,脳腫瘍の正確なセグメンテーションにおける課題を解決するために,新しいハイブリッドマルチヘッド注意型U-Netアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:46:26Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
総合的な脳コネクトームの構築は、静止状態fMRI(rs-fMRI)解析において基本的な重要性が証明されている。
我々は脳ネットワークを有向非循環グラフ(DAG)としてモデル化し、脳領域間の直接因果関係を発見する。
本研究では,効率的な接続性を推定し,rs-fMRI時系列を分類するために,時空間DAG畳み込みネットワーク(ST-DAGCN)を提案する。
論文 参考訳(メタデータ) (2023-12-16T04:31:51Z) - Streamlining Brain Tumor Classification with Custom Transfer Learning in
MRI Images [1.534667887016089]
脳腫瘍はますます広まり、脳内の異常な組織が制御不能に広がるのが特徴である。
本研究では,MRI画像からの脳腫瘍の分類を,カスタムトランスファー学習ネットワークを用いて効率的に行う方法を提案する。
論文 参考訳(メタデータ) (2023-10-19T19:13:04Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
我々はUniBrainと呼ばれるユニバーサル脳MRI診断のための階層的知識強化事前訓練フレームワークを提案する。
具体的には、UniBrainは、定期的な診断から24,770のイメージレポートペアの大規模なデータセットを活用する。
論文 参考訳(メタデータ) (2023-09-13T09:22:49Z) - Automated ensemble method for pediatric brain tumor segmentation [0.0]
本研究では,ONet と UNet の修正版を用いた新しいアンサンブル手法を提案する。
データ拡張により、さまざまなスキャンプロトコル間の堅牢性と精度が保証される。
以上の結果から,この高度なアンサンブルアプローチは診断精度の向上に期待できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-08-14T15:29:32Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
脳腫瘍は、個人の寿命を減少させる深刻な健康上の合併症の1つである。
脳腫瘍のタイムリーな検出と予測は、脳腫瘍による死亡率の予防に役立つ。
ディープラーニングベースのアプローチは、自動化バイオメディカル画像探索ツールを開発するための有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-16T14:06:45Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - Multi-modal learning for predicting the genotype of glioma [14.93152817415408]
Isocitrate dehydrogenase (IDH)遺伝子変異はグリオーマの診断と予後に必須なバイオマーカーである。
焦点腫瘍像と幾何学的特徴をMRIから派生した脳ネットワーク特徴と統合することにより、グリオーマ遺伝子型をより正確に予測できることが期待されている。
本稿では,3つのエンコーダを用いたマルチモーダル学習フレームワークを提案し,局所腫瘍像,腫瘍幾何学,大域脳ネットワークの特徴を抽出する。
論文 参考訳(メタデータ) (2022-03-21T10:20:04Z) - MEDUSA: Multi-scale Encoder-Decoder Self-Attention Deep Neural Network
Architecture for Medical Image Analysis [71.2022403915147]
医用画像解析に適したマルチスケールエンコーダデコーダ自己保持機構であるMEDUSAを紹介する。
我々は、COVIDx、RSNA RICORD、RSNA Pneumonia Challengeなどの医療画像分析ベンチマークの最先端性能を得た。
論文 参考訳(メタデータ) (2021-10-12T15:05:15Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
本研究では, 異常セグメンテーション性能の向上と, ネイティブ解像度で入力データのより鮮明な再構成を行う汎用能力を示す。
ラプラシアンピラミッドのモデリングにより、複数のスケールで病変のデライン化と集約が可能になる。
論文 参考訳(メタデータ) (2020-06-23T09:20:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。