論文の概要: Using Semantic Information for Defining and Detecting OOD Inputs
- arxiv url: http://arxiv.org/abs/2302.11019v1
- Date: Tue, 21 Feb 2023 21:31:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-23 17:02:35.748649
- Title: Using Semantic Information for Defining and Detecting OOD Inputs
- Title(参考訳): 意味情報を用いたOOD入力の定義と検出
- Authors: Ramneet Kaur, Xiayan Ji, Souradeep Dutta, Michele Caprio, Yahan Yang,
Elena Bernardis, Oleg Sokolsky, Insup Lee
- Abstract要約: アウト・オブ・ディストリビューション(OOD)検出は近年注目されている。
現在の検出器がトレーニングデータセットのバイアスを継承していることを示します。
これにより、現在のOOD検出器はトレーニング分布の外にある入力に不透過であり、同じ意味情報を持つことができる。
我々は,MNISTおよびCOCOデータセットのトレーニングデータから抽出した意味情報に基づいてOOD検出を行う。
- 参考スコア(独自算出の注目度): 3.9577682622066264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As machine learning models continue to achieve impressive performance across
different tasks, the importance of effective anomaly detection for such models
has increased as well. It is common knowledge that even well-trained models
lose their ability to function effectively on out-of-distribution inputs. Thus,
out-of-distribution (OOD) detection has received some attention recently. In
the vast majority of cases, it uses the distribution estimated by the training
dataset for OOD detection. We demonstrate that the current detectors inherit
the biases in the training dataset, unfortunately. This is a serious
impediment, and can potentially restrict the utility of the trained model. This
can render the current OOD detectors impermeable to inputs lying outside the
training distribution but with the same semantic information (e.g. training
class labels). To remedy this situation, we begin by defining what should
ideally be treated as an OOD, by connecting inputs with their semantic
information content. We perform OOD detection on semantic information extracted
from the training data of MNIST and COCO datasets and show that it not only
reduces false alarms but also significantly improves the detection of OOD
inputs with spurious features from the training data.
- Abstract(参考訳): 機械学習モデルがさまざまなタスクで印象的なパフォーマンスを達成し続けるにつれ、そのようなモデルの効果的な異常検出の重要性も高まっている。
十分に訓練されたモデルでさえ、配布外入力で効果的に機能する能力を失うことは一般的な知識である。
したがって、最近OOD(out-of-distribution)検出が注目されている。
ほとんどの場合、OOD検出のためのトレーニングデータセットによって推定される分布を使用する。
残念ながら、現在の検出器はトレーニングデータセットのバイアスを継承している。
これは深刻な障害であり、トレーニングされたモデルの実用性を制限する可能性がある。
これにより、現在のOOD検出器はトレーニング分布の外にある入力に不透過であり、同じ意味情報(トレーニングクラスラベルなど)を持つことができる。
この状況を改善するために、入力を意味情報の内容と結びつけて、理想的にOODとして扱われるべきものを定義することから始める。
我々は,MNIST と COCO データセットのトレーニングデータから抽出した意味情報に対して OOD 検出を行い,誤報を低減させるだけでなく,トレーニングデータから素早い特徴を持つ OOD 入力の検出を大幅に改善することを示す。
関連論文リスト
- EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Out-of-distribution Detection Learning with Unreliable
Out-of-distribution Sources [73.28967478098107]
アウト・オブ・ディストリビューション(OOD)検出は、予測者が有効な予測を行うことができないOODデータをイン・ディストリビューション(ID)データとして識別する。
通常、OODパターンを識別できる予測器をトレーニングするために、実際のアウト・オブ・ディストリビューション(OOD)データを収集するのは困難である。
本稿では,Auxiliary Task-based OOD Learning (ATOL) というデータ生成に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-06T16:26:52Z) - Can Pre-trained Networks Detect Familiar Out-of-Distribution Data? [37.36999826208225]
PT-OODが事前学習ネットワークのOOD検出性能に及ぼす影響について検討した。
特徴空間におけるPT-OODの低線形分離性はPT-OOD検出性能を著しく低下させることがわかった。
本稿では,大規模事前学習モデルに対する一意な解を提案する。
論文 参考訳(メタデータ) (2023-10-02T02:01:00Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイする際に、セキュアAIの必須の側面である。
本稿では,IDデータを用いた学習モデルのOOD識別能力を復元する新しい手法であるUnleashing Maskを提案する。
本手法では, マスクを用いて記憶した非定型サンプルを抽出し, モデルを微調整するか, 導入したマスクでプルーする。
論文 参考訳(メタデータ) (2023-06-06T14:23:34Z) - Is Fine-tuning Needed? Pre-trained Language Models Are Near Perfect for
Out-of-Domain Detection [28.810524375810736]
アウト・オブ・ディストリビューション(OOD)検出は、テキスト上の信頼できる予測にとって重要なタスクである。
事前訓練された言語モデルによる微調整は、OOD検出器を導出するための事実上の手順である。
距離に基づく検出手法を用いて、事前学習した言語モデルは、分布シフトがドメイン変更を伴う場合、ほぼ完璧なOOD検出器であることを示す。
論文 参考訳(メタデータ) (2023-05-22T17:42:44Z) - Out-of-Distribution Detection with Hilbert-Schmidt Independence
Optimization [114.43504951058796]
異常検出タスクはAIの安全性において重要な役割を担っている。
ディープニューラルネットワーク分類器は通常、アウト・オブ・ディストリビューション(OOD)の入力を、信頼性の高いイン・ディストリビューション・クラスに誤って分類する傾向がある。
我々は,OOD検出タスクにおいて実用的かつ理論的に有効な代替確率論的パラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-26T15:59:55Z) - Augmenting Softmax Information for Selective Classification with
Out-of-Distribution Data [7.221206118679026]
既存のポストホック法はOOD検出でのみ評価した場合とは大きく異なる性能を示す。
本稿では,特徴に依存しない情報を用いて,ソフトマックスに基づく信頼度を向上するSCOD(Softmax Information Retaining Combination, SIRC)の新たな手法を提案する。
多様なImageNetスケールのデータセットと畳み込みニューラルネットワークアーキテクチャの実験は、SIRCがSCODのベースラインを一貫して一致または上回っていることを示している。
論文 参考訳(メタデータ) (2022-07-15T14:39:57Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z) - Training OOD Detectors in their Natural Habitats [31.565635192716712]
アウト・オブ・ディストリビューション(OOD)検出は、野生にデプロイされた機械学習モデルにとって重要である。
近年の手法では,OOD検出の改善のために補助外乱データを用いてモデルを正規化している。
我々は、自然にIDとOODの両方のサンプルで構成される野生の混合データを活用する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-07T15:38:39Z) - EARLIN: Early Out-of-Distribution Detection for Resource-efficient
Collaborative Inference [4.826988182025783]
協調推論により、リソース制約のあるエッジデバイスは、入力をサーバにアップロードすることで推論を行うことができる。
このセットアップは、成功した推論のためにコスト効率よく機能するが、モデルがトレーニングされていない入力サンプルに直面すると、非常にパフォーマンスが低下する。
我々は,事前訓練されたCNNモデルの浅い層から重要な特徴を抽出する,新しい軽量OOD検出手法を提案する。
論文 参考訳(メタデータ) (2021-06-25T18:43:23Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。