論文の概要: Discovering the Gems in Early Layers: Accelerating Long-Context LLMs
with 1000x Input Token Reduction
- arxiv url: http://arxiv.org/abs/2409.17422v1
- Date: Wed, 25 Sep 2024 23:14:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:50:22.780775
- Title: Discovering the Gems in Early Layers: Accelerating Long-Context LLMs
with 1000x Input Token Reduction
- Title(参考訳): アーリーレイヤにおけるGemの発見 - 長期 LLM の高速化
1000倍の入力トークン削減
- Authors: Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, Shafiq Joty
- Abstract要約: 大きな言語モデル(LLM)は、長いコンテキスト入力を扱う際、顕著な能力を示してきたが、これは計算リソースとレイテンシの増大によるものである。
本研究では,LLM推論を高速化し,GPUメモリ使用量を削減するために,長期的ボトルネックに対する新たなアプローチを提案する。
本稿では,LLMの初期レイヤをフィルタとして,入力トークンの選択と圧縮を行うアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 47.38471103190534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities in
handling long context inputs, but this comes at the cost of increased
computational resources and latency. Our research introduces a novel approach
for the long context bottleneck to accelerate LLM inference and reduce GPU
memory consumption. Our research demonstrates that LLMs can identify relevant
tokens in the early layers before generating answers to a query. Leveraging
this insight, we propose an algorithm that uses early layers of an LLM as
filters to select and compress input tokens, significantly reducing the context
length for subsequent processing. Our method, GemFilter, demonstrates
substantial improvements in both speed and memory efficiency compared to
existing techniques, such as standard attention and SnapKV/H2O. Notably, it
achieves a 2.4$\times$ speedup and 30\% reduction in GPU memory usage compared
to SOTA methods. Evaluation on the Needle in a Haystack task shows that
GemFilter significantly outperforms standard attention, SnapKV and demonstrates
comparable performance on the LongBench challenge. GemFilter is simple,
training-free, and broadly applicable across different LLMs. Crucially, it
provides interpretability by allowing humans to inspect the selected input
sequence. These findings not only offer practical benefits for LLM deployment,
but also enhance our understanding of LLM internal mechanisms, paving the way
for further optimizations in LLM design and inference. Our code is available at
\url{https://github.com/SalesforceAIResearch/GemFilter}.
- Abstract(参考訳): 大きな言語モデル(LLM)は、長いコンテキスト入力を扱う際、顕著な能力を示してきたが、これは計算リソースとレイテンシの増大によるものである。
本研究では,LLM推論を高速化し,GPUメモリ使用量を削減するために,長期的ボトルネックに対する新たなアプローチを提案する。
我々の研究は、LLMがクエリに対する応答を生成する前に、初期のレイヤで関連するトークンを識別できることを実証している。
この知見を生かして,LLMの初期層をフィルタとして入力トークンを選択・圧縮するアルゴリズムを提案する。
GemFilterは,従来の技術である標準アテンションやSnapKV/H2Oに比べて,速度とメモリ効率が大幅に向上したことを示す。
特に、SOTA法と比較して、2.4$\times$スピードアップと30\%のGPUメモリ使用量削減を実現している。
HaystackタスクにおけるNeedleの評価は、GemFilterが標準的注意力であるSnapKVを大幅に上回り、LongBenchチャレンジで同等のパフォーマンスを示していることを示している。
GemFilterはシンプルで、トレーニング不要で、様々なLLMで広く適用できます。
重要なのは、人間が選択した入力シーケンスを検査できるようにすることで、解釈性を提供する。
これらの知見は, LLMの展開に実用的なメリットを提供するだけでなく, LLMの内部機構の理解を深め, LLM設計と推論におけるさらなる最適化の道を開いた。
私たちのコードは \url{https://github.com/SalesforceAIResearch/GemFilter} で利用可能です。
関連論文リスト
- Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - Efficient LLM Scheduling by Learning to Rank [19.33941579312897]
そこで本研究では,要求の集合における出力長の相対的なランクを,学習者によるランク付けによって予測可能であることを示す。
我々は,LLM推論のための新しいスケジューラを開発し,SJFスケジュールを既存手法よりも高速に近似する。
論文 参考訳(メタデータ) (2024-08-28T13:35:54Z) - MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention [36.49445805074941]
Minference (Milliontokens Inference) は長周期処理の前処理を高速化するスパース計算法である。
我々は,MInferenceが精度を維持しつつ,A100にプリフィルする際の推論遅延を最大10倍に効果的に低減できることを実証した。
論文 参考訳(メタデータ) (2024-07-02T17:59:56Z) - Re-Ranking Step by Step: Investigating Pre-Filtering for Re-Ranking with Large Language Models [5.0490573482829335]
大規模言語モデル(LLM)は、さまざまなゼロショット機能を備えた多種多様な自然言語処理タスクに革命をもたらしている。
本稿では、情報検索(IR)における通過前の事前フィルタリングステップの使用について検討する。
実験の結果, この事前フィルタリングにより, LLMは再ランクタスクにおいて, 性能が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-26T20:12:24Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
自己回帰型大規模言語モデル(LLaMa, GPT)は、言語理解と生成において顕著な成功を収めている。
発生時に発生する過負荷を軽減するため、いくつかの早期退避および層下降戦略が提案されている。
本稿では,入力適応型フィードフォワードスキップ戦略であるFFN-SkipLLMを提案する。
論文 参考訳(メタデータ) (2024-04-05T02:35:43Z) - Optimizing LLM Queries in Relational Workloads [58.254894049950366]
本稿では,LLMをリレーショナルクエリ内で実行する解析処理に対して,LLM(Large Language Models)推論を最適化する方法を示す。
私たちはこれらの最適化をApache Sparkで実装し、vLLMをバックエンドとして提供しています。
実データセット上の多様なLLMベースのクエリのベンチマークで、エンドツーエンドのレイテンシを最大4.4倍改善する。
論文 参考訳(メタデータ) (2024-03-09T07:01:44Z) - InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory [93.20588235940453]
本稿では,トレーニング不要なメモリベースのInfLLMを提案する。
InfLLMは、リモートコンテキストを追加のメモリユニットに格納し、トークン関連ユニットを注目するために効率的なメカニズムを使用する。
シーケンス長が$1,024$Kにスケールしても、InfLLMは依然として、長距離依存関係を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-02-07T06:50:42Z) - Efficient LLM inference solution on Intel GPU [19.154403468201924]
トランスフォーマーベースの大規模言語モデル(LLM)は多くの分野で広く使われている。
低レイテンシかつ高スループットで効率的なLLM推論ソリューションを提案する。
標準的なHuggingFaceの実装と比較して、提案されたソリューションは最大で7倍のトークンレイテンシと27倍のスループットを実現している。
論文 参考訳(メタデータ) (2023-12-19T05:40:43Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。