Does Worst-Performing Agent Lead the Pack? Analyzing Agent Dynamics in Unified Distributed SGD
- URL: http://arxiv.org/abs/2409.17499v2
- Date: Mon, 28 Oct 2024 19:51:09 GMT
- Title: Does Worst-Performing Agent Lead the Pack? Analyzing Agent Dynamics in Unified Distributed SGD
- Authors: Jie Hu, Yi-Ting Ma, Do Young Eun,
- Abstract summary: Distributed learning is essential to train machine learning algorithms across heterogeneous agents.
We conduct an analysis of Unified Distributed SGD (UD-SGD)
We assess how different sampling strategies, such as i.i.d. sampling, shuffling, and Markovian sampling, affect the convergence speed of UD-SGD.
- Score: 7.434126318858966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed learning is essential to train machine learning algorithms across heterogeneous agents while maintaining data privacy. We conduct an asymptotic analysis of Unified Distributed SGD (UD-SGD), exploring a variety of communication patterns, including decentralized SGD and local SGD within Federated Learning (FL), as well as the increasing communication interval in the FL setting. In this study, we assess how different sampling strategies, such as i.i.d. sampling, shuffling, and Markovian sampling, affect the convergence speed of UD-SGD by considering the impact of agent dynamics on the limiting covariance matrix as described in the Central Limit Theorem (CLT). Our findings not only support existing theories on linear speedup and asymptotic network independence, but also theoretically and empirically show how efficient sampling strategies employed by individual agents contribute to overall convergence in UD-SGD. Simulations reveal that a few agents using highly efficient sampling can achieve or surpass the performance of the majority employing moderately improved strategies, providing new insights beyond traditional analyses focusing on the worst-performing agent.
Related papers
- Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations.
We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games.
Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Reducing Spurious Correlation for Federated Domain Generalization [15.864230656989854]
In open-world scenarios, global models may struggle to predict well on entirely new domain data captured by certain media.
Existing methods still rely on strong statistical correlations between samples and labels to address this issue.
We introduce FedCD, an overall optimization framework at both the local and global levels.
arXiv Detail & Related papers (2024-07-27T05:06:31Z) - Distributed Event-Based Learning via ADMM [11.461617927469316]
We consider a distributed learning problem, where agents minimize a global objective function by exchanging information over a network.
Our approach has two distinct features: (i) It substantially reduces communication by triggering communication only when necessary, and (ii) it is agnostic to the data-distribution among the different agents.
arXiv Detail & Related papers (2024-05-17T08:30:28Z) - Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Finite-Time Analysis of On-Policy Heterogeneous Federated Reinforcement Learning [8.632943870358627]
Federated reinforcement learning (FRL) has emerged as a promising paradigm for reducing the sample complexity of reinforcement learning tasks.
We introduce FedSARSA, a novel on-policy reinforcement learning scheme equipped with linear function approximation.
We show that FedSARSA converges to a policy that is near-optimal for all agents, with the extent of near-optimality proportional to the level of heterogeneity.
arXiv Detail & Related papers (2024-01-27T02:43:45Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Taming Multi-Agent Reinforcement Learning with Estimator Variance
Reduction [12.94372063457462]
Centralised training with decentralised execution (CT-DE) serves as the foundation of many leading multi-agent reinforcement learning (MARL) algorithms.
It suffers from a critical drawback due to its reliance on learning from a single sample of the joint-action at a given state.
We propose an enhancement tool that accommodates any actor-critic MARL method.
arXiv Detail & Related papers (2022-09-02T13:44:00Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z) - Federated Learning under Importance Sampling [49.17137296715029]
We study the effect of importance sampling and devise schemes for sampling agents and data non-uniformly guided by a performance measure.
We find that in schemes involving sampling without replacement, the performance of the resulting architecture is controlled by two factors related to data variability at each agent.
arXiv Detail & Related papers (2020-12-14T10:08:55Z) - A Unified Theory of Decentralized SGD with Changing Topology and Local
Updates [70.9701218475002]
We introduce a unified convergence analysis of decentralized communication methods.
We derive universal convergence rates for several applications.
Our proofs rely on weak assumptions.
arXiv Detail & Related papers (2020-03-23T17:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.