論文の概要: Shape-intensity knowledge distillation for robust medical image segmentation
- arxiv url: http://arxiv.org/abs/2409.17503v1
- Date: Thu, 26 Sep 2024 03:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:17:44.803528
- Title: Shape-intensity knowledge distillation for robust medical image segmentation
- Title(参考訳): 堅牢な医用画像分割のための形状インテンシティ知識蒸留法
- Authors: Wenhui Dong, Bo Du, Yongchao Xu,
- Abstract要約: セグメント化ネットワークに結合形状インテンシティ事前情報を組み込む新しい手法を提案する。
5つの医用画像セグメンテーションタスクの実験により,提案した形状-強度知識蒸留(Shape-Intensity Knowledge Distillation)が一貫していくつかのベースラインモデルを改善することが示された。
- 参考スコア(独自算出の注目度): 32.182670290036214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many medical image segmentation methods have achieved impressive results. Yet, most existing methods do not take into account the shape-intensity prior information. This may lead to implausible segmentation results, in particular for images of unseen datasets. In this paper, we propose a novel approach to incorporate joint shape-intensity prior information into the segmentation network. Specifically, we first train a segmentation network (regarded as the teacher network) on class-wise averaged training images to extract valuable shape-intensity information, which is then transferred to a student segmentation network with the same network architecture as the teacher via knowledge distillation. In this way, the student network regarded as the final segmentation model can effectively integrate the shape-intensity prior information, yielding more accurate segmentation results. Despite its simplicity, experiments on five medical image segmentation tasks of different modalities demonstrate that the proposed Shape-Intensity Knowledge Distillation (SIKD) consistently improves several baseline models (including recent MaxStyle and SAMed) under intra-dataset evaluation, and significantly improves the cross-dataset generalization ability. The code is available at https://github.com/whdong-whu/SIKD.
- Abstract(参考訳): 多くの医用画像分割法は印象的な成果を上げている。
しかし、ほとんどの既存手法は、形状と強度の事前情報を考慮していない。
これは、特に目に見えないデータセットのイメージに対して、不可解なセグメンテーション結果をもたらす可能性がある。
本稿では,関節形状・強度事前情報をセグメント化ネットワークに組み込む新しい手法を提案する。
具体的には、まず、クラス平均化訓練画像上にセグメンテーションネットワーク(教師ネットワーク)をトレーニングし、価値ある形状インテンシティ情報を抽出し、その後、知識蒸留により教師と同じネットワーク構造を持つ学生セグメンテーションネットワークに転送する。
このようにして、最終セグメンテーションモデルと見なされる学生ネットワークは、形状インテンシティ事前情報を効果的に統合することができ、より正確なセグメンテーション結果が得られる。
その単純さにもかかわらず、異なるモードの5つの医用画像セグメンテーションタスクの実験により、提案された形状-強度知識蒸留(SIKD)は、データセット内評価の下で複数のベースラインモデル(最近のMaxStyleやSAMedを含む)を一貫して改善し、データセット間の一般化能力を著しく改善することを示した。
コードはhttps://github.com/whdong-whu/SIKD.comで公開されている。
関連論文リスト
- Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
深層学習法 (DL) が提案され, 画像分割に広く利用されている。
DLメソッドは通常、トレーニングデータとして大量の手動セグメントデータを必要とし、解釈性に乏しい。
本稿では,MSモデルにおける手作り正則項をデータ適応型一般化可学習正則項に置き換える。
論文 参考訳(メタデータ) (2023-06-25T02:34:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - A Knowledge Distillation framework for Multi-Organ Segmentation of
Medaka Fish in Tomographic Image [5.881800919492064]
メダカ魚のトモグラフィー画像における多臓器セグメンテーションのための自己学習フレームワークを提案する。
本研究では,事前訓練されたモデルから得られた擬似ラベルデータを利用して,擬似ラベルデータを洗練するために品質教師を採用する。
実験結果から,本手法は全データセット上で平均IoU(Intersection over Union)を5.9%改善することが示された。
論文 参考訳(メタデータ) (2023-02-24T10:31:29Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
医用画像のセグメンテーションにおいて、教師付きディープネットワークの成功は、豊富なラベル付きデータを必要とするコストが伴う。
本稿では,ボリューム画像分割ペアを合成可能なデータ拡張のための,新しいボリューム自己教師型学習法を提案する。
我々の研究の中心的信条は、ワンショット生成学習と自己指導型学習戦略の併用による恩恵を受けている。
論文 参考訳(メタデータ) (2021-10-05T15:28:42Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
不完全アノテーションを用いた胸部X線分割のための新しいカスケードロバスト学習フレームワークを提案する。
モデルは3つの独立したネットワークから成り,ピアネットワークから有用な情報を効果的に学習できる。
提案手法は,従来の手法と比較して,セグメント化タスクの精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-04-05T15:50:16Z) - Learning to Segment Human Body Parts with Synthetically Trained Deep
Convolutional Networks [58.0240970093372]
本稿では,合成データのみを用いて学習した深部畳み込みニューラルネットワークに基づく人体部分分割のための新しい枠組みを提案する。
提案手法は,人体部品の実際の注釈付きデータを用いてモデルを訓練することなく,最先端の結果が得られる。
論文 参考訳(メタデータ) (2021-02-02T12:26:50Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images [24.216869988183092]
本稿では,豊富なラベルのないデータを活用し,セグメント化出力に幾何学的形状制約を課す,形状認識型半教師付きセグメンテーション戦略を提案する。
物体表面のセマンティックセグメンテーションと符号付き距離マップDMを共同で予測するマルチタスクディープネットワークを開発した。
実験の結果,提案手法は形状推定を改良し,最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-21T11:44:52Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。