論文の概要: A Knowledge Distillation framework for Multi-Organ Segmentation of
Medaka Fish in Tomographic Image
- arxiv url: http://arxiv.org/abs/2302.12562v1
- Date: Fri, 24 Feb 2023 10:31:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-27 13:55:27.833736
- Title: A Knowledge Distillation framework for Multi-Organ Segmentation of
Medaka Fish in Tomographic Image
- Title(参考訳): トモグラフィー画像におけるメダカ魚のマルチオーガンセグメンテーションのための知識蒸留フレームワーク
- Authors: Jwalin Bhatt, Yaroslav Zharov, Sungho Suh, Tilo Baumbach, Vincent
Heuveline, Paul Lukowicz
- Abstract要約: メダカ魚のトモグラフィー画像における多臓器セグメンテーションのための自己学習フレームワークを提案する。
本研究では,事前訓練されたモデルから得られた擬似ラベルデータを利用して,擬似ラベルデータを洗練するために品質教師を採用する。
実験結果から,本手法は全データセット上で平均IoU(Intersection over Union)を5.9%改善することが示された。
- 参考スコア(独自算出の注目度): 5.881800919492064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Morphological atlases are an important tool in organismal studies, and modern
high-throughput Computed Tomography (CT) facilities can produce hundreds of
full-body high-resolution volumetric images of organisms. However, creating an
atlas from these volumes requires accurate organ segmentation. In the last
decade, machine learning approaches have achieved incredible results in image
segmentation tasks, but they require large amounts of annotated data for
training. In this paper, we propose a self-training framework for multi-organ
segmentation in tomographic images of Medaka fish. We utilize the
pseudo-labeled data from a pretrained Teacher model and adopt a Quality
Classifier to refine the pseudo-labeled data. Then, we introduce a pixel-wise
knowledge distillation method to prevent overfitting to the pseudo-labeled data
and improve the segmentation performance. The experimental results demonstrate
that our method improves mean Intersection over Union (IoU) by 5.9% on the full
dataset and enables keeping the quality while using three times less markup.
- Abstract(参考訳): 形態学的アトラスは生物研究において重要なツールであり、現代の高出力CT(Computed Tomography)施設は、生物の完全な高解像度の容積像を数百枚作成することができる。
しかし、これらのボリュームからアトラスを作成するには正確な臓器分割が必要である。
過去10年間、機械学習のアプローチは画像のセグメンテーションタスクにおいて驚くべき成果を上げてきたが、トレーニングには大量のアノテートデータが必要である。
本稿では, メダカ魚のトモグラフィー画像におけるマルチオーガナイズドセグメンテーションのための自己学習フレームワークを提案する。
教師モデルから得られた疑似ラベルデータを活用し,疑似ラベルデータの改良に品質分類器を採用する。
次に,擬似ラベルデータへのオーバーフィットを防止し,セグメンテーション性能を向上させるため,画素単位の知識蒸留手法を提案する。
実験結果から,本手法は全データセットにおいて平均IoU(Intersection over Union)を5.9%改善し,マークアップを3倍減らしながら品質を維持することができることがわかった。
関連論文リスト
- Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
より少ないアノテーションで医用画像のセグメンテーションを行うための平均教師ネットワーク上に構築されたPLGDFフレームワークを提案する。
本稿では,ラベル付きデータとラベルなしデータを組み合わせてデータセットを効果的に拡張する,新しい擬似ラベル利用方式を提案する。
本フレームワークは,最先端の6つの半教師あり学習手法と比較して,優れた性能が得られる。
論文 参考訳(メタデータ) (2023-11-17T06:36:43Z) - Diffusion-based Data Augmentation for Nuclei Image Segmentation [68.28350341833526]
核セグメンテーションのための拡散法を初めて導入する。
このアイデアは、多数のラベル付き画像を合成し、セグメンテーションモデルを訓練することを目的としている。
実験の結果,10%のラベル付き実データセットを合成サンプルで拡張することにより,同等のセグメンテーション結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-10-22T06:16:16Z) - Information Gain Sampling for Active Learning in Medical Image
Classification [3.1619162190378787]
本研究は,ラベル付け対象プールからの最適な画像選択を誘導する情報理論のアクティブラーニングフレームワークを提案する。
2つの異なる医用画像分類データセットで実験を行う。
論文 参考訳(メタデータ) (2022-08-01T16:25:53Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Self-Paced Contrastive Learning for Semi-supervisedMedical Image
Segmentation with Meta-labels [6.349708371894538]
メタラベルアノテーションを扱うために、コントラスト学習を適用することを提案する。
画像エンコーダの事前トレーニングにはメタラベルを使用し、半教師付きトレーニングを標準化する。
3つの異なる医用画像セグメンテーションデータセットの結果から,本手法は数回のスキャンでトレーニングしたモデルの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2021-07-29T04:30:46Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
データ不足下における部分教師付き学習(PSL)における方法論的ギャップを埋めるために,不確実性下でのビシナルラベル(VLUU)を提案する。
マルチタスク学習とヴィジナルリスク最小化によって動機づけられたVLUUは、ビジナルラベルを生成することによって、部分的に教師付き問題を完全な教師付き問題に変換する。
本研究は,ラベル効率の高い深層学習における新たな研究の方向性を示唆するものである。
論文 参考訳(メタデータ) (2020-11-28T16:31:00Z) - Suggestive Annotation of Brain Tumour Images with Gradient-guided
Sampling [14.092503407739422]
本稿では,脳腫瘍画像に対する効率的なアノテーションフレームワークを提案する。
実験によると、BraTS 2019データセットから、わずか19%の注釈付き患者スキャンでセグメンテーションモデルをトレーニングすることは、腫瘍セグメンテーションタスク全体のデータセット上でモデルをトレーニングするのと同等のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2020-06-26T13:39:49Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。