論文の概要: CAMOT: Camera Angle-aware Multi-Object Tracking
- arxiv url: http://arxiv.org/abs/2409.17533v1
- Date: Thu, 26 Sep 2024 04:40:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 23:06:47.818123
- Title: CAMOT: Camera Angle-aware Multi-Object Tracking
- Title(参考訳): CAMOT:カメラアングル対応マルチオブジェクトトラッキング
- Authors: Felix Limanta, Kuniaki Uto, Koichi Shinoda,
- Abstract要約: 本稿では,マルチオブジェクト追跡のための簡易カメラアングル推定器であるCAMOTを提案する。
複数の物体が各ビデオフレームの平面上に位置していると仮定すると、CAMOTは物体検出を用いてカメラの角度を推定する。
提案手法をMOT17とMOT20データセット上の様々な2次元MOT手法に付加して評価し,その有効性を確認した。
- 参考スコア(独自算出の注目度): 4.2056926734482065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes CAMOT, a simple camera angle estimator for multi-object tracking to tackle two problems: 1) occlusion and 2) inaccurate distance estimation in the depth direction. Under the assumption that multiple objects are located on a flat plane in each video frame, CAMOT estimates the camera angle using object detection. In addition, it gives the depth of each object, enabling pseudo-3D MOT. We evaluated its performance by adding it to various 2D MOT methods on the MOT17 and MOT20 datasets and confirmed its effectiveness. Applying CAMOT to ByteTrack, we obtained 63.8% HOTA, 80.6% MOTA, and 78.5% IDF1 in MOT17, which are state-of-the-art results. Its computational cost is significantly lower than the existing deep-learning-based depth estimators for tracking.
- Abstract(参考訳): 本稿では,複数物体追跡のための簡易カメラアングル推定器であるCAMOTを提案する。
1)排他的・排他的
2)深度方向の不正確な距離推定。
複数の物体が各ビデオフレームの平面上に位置していると仮定すると、CAMOTは物体検出を用いてカメラの角度を推定する。
さらに、各オブジェクトの深さを与え、擬似3DMOTを可能にする。
提案手法をMOT17とMOT20データセット上の様々な2次元MOT手法に付加して評価し,その有効性を確認した。
ByteTrack に CAMOT を適用して 63.8% HOTA,80.6% MOTA,78.5% IDF1 を MOT17 で取得した。
その計算コストは、トラッキングのための既存のディープラーニングベースの深度推定器よりも大幅に低い。
関連論文リスト
- DepthMOT: Depth Cues Lead to a Strong Multi-Object Tracker [4.65004369765875]
各オブジェクトを正確に区別することは、MOTアルゴリズムの基本的な目標である。
本稿では, (i) シーン深度マップのテクトitend-to-endの検出と推定, (ii) カメラのポーズ推定により不規則なカメラの動きを補正するtextitDepthMOTを提案する。
論文 参考訳(メタデータ) (2024-04-08T13:39:12Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
本稿では、この問題を解決するためにRecurrenT(DORT)の動的オブジェクトをモデル化することを提案する。
DORTは、重い計算負担を軽減する動き推定のために、オブジェクトワイズローカルボリュームを抽出する。
フレキシブルで実用的で、ほとんどのカメラベースの3Dオブジェクト検出器に差し込むことができる。
論文 参考訳(メタデータ) (2023-03-29T12:33:55Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
マルチオブジェクトトラッキング(MOT)は、ビデオフレーム間のオブジェクトのバウンディングボックスとIDを推定することを目的としている。
低スコア検出ボックス内の真のオブジェクトをマイニングするための階層型データアソシエーション戦略を提案する。
3次元のシナリオでは、トラッカーが世界座標の物体速度を予測するのがずっと簡単である。
論文 参考訳(メタデータ) (2023-03-27T15:35:21Z) - Monocular 3D Object Detection with Depth from Motion [74.29588921594853]
我々は、正確な物体深度推定と検出にカメラエゴモーションを利用する。
我々のフレームワークはDfM(Depth from Motion)と呼ばれ、2D画像の特徴を3D空間に持ち上げて3Dオブジェクトを検出する。
我々のフレームワークは、KITTIベンチマークにおいて最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2022-07-26T15:48:46Z) - DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association [8.34219107351442]
本稿では,精度と速度の良好なトレードオフを実現するために,カメラ-LiDAR融合型MOT法を提案する。
提案手法は、追跡精度と処理速度の両方の観点から、最先端MOT法に対して明らかな利点を示す。
論文 参考訳(メタデータ) (2022-02-24T13:36:29Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
マルチオブジェクトトラッキング(MOT)により、移動ロボットは周囲の物体を3次元空間と時間で位置づけすることで、良好な動作計画とナビゲーションを行うことができる。
既存の方法は、深度センサー(例えばLiDAR)を使用して3D空間のターゲットを検出し追跡するが、信号の間隔が限られているため、検出範囲は限られている。
我々は,両方のセンサモダリティから利用可能な物体を全て統合し,シーンのダイナミックスを適切に解釈する簡易なトラッキング定式化であるeagermotを提案する。
論文 参考訳(メタデータ) (2021-04-29T22:30:29Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
周囲の物体の将来の位置を予測し、自律運転などの多くのアプリケーションで観測者の行動を計画するためには、信頼性と正確な3D追跡フレームワークが不可欠である。
移動プラットフォーム上で撮影された2次元画像のシーケンスから,移動物体を時間とともに効果的に関連付け,その全3次元バウンディングボックス情報を推定するフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-12T15:30:02Z) - DroTrack: High-speed Drone-based Object Tracking Under Uncertainty [0.23204178451683263]
DroTrackは、ドローンがキャプチャしたビデオシーケンスのための高速なビジュアル単一オブジェクト追跡フレームワークである。
ファジィC平均に基づく効果的なオブジェクトセグメンテーションを実装した。
また、幾何角運動を利用して信頼度の高い物体スケールを推定する。
論文 参考訳(メタデータ) (2020-05-02T13:16:16Z) - Tracking Objects as Points [83.9217787335878]
同時に検出と追跡を同時に行うアルゴリズムは,最先端技術よりもシンプルで,高速で,高精度である。
トラッカーであるCenterTrackは、前のフレームから一対のイメージと検出に検出モデルを適用します。
CenterTrackはシンプルで、オンライン(未来を覗くことはない)で、リアルタイムだ。
論文 参考訳(メタデータ) (2020-04-02T17:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。