論文の概要: Conjugate Bayesian Two-step Change Point Detection for Hawkes Process
- arxiv url: http://arxiv.org/abs/2409.17591v3
- Date: Tue, 15 Oct 2024 11:52:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 16:10:55.878379
- Title: Conjugate Bayesian Two-step Change Point Detection for Hawkes Process
- Title(参考訳): ホークスプロセスにおける共役ベイズ2段階変化点検出
- Authors: Zeyue Zhang, Xiaoling Lu, Feng Zhou,
- Abstract要約: 本稿では,ホークス過程に対する共役ベイズ変換点検出法を提案する。
合成データと実データの両方で実験を行い,本手法の有効性と効率性を示した。
- 参考スコア(独自算出の注目度): 3.819329978428786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Bayesian two-step change point detection method is popular for the Hawkes process due to its simplicity and intuitiveness. However, the non-conjugacy between the point process likelihood and the prior requires most existing Bayesian two-step change point detection methods to rely on non-conjugate inference methods. These methods lack analytical expressions, leading to low computational efficiency and impeding timely change point detection. To address this issue, this work employs data augmentation to propose a conjugate Bayesian two-step change point detection method for the Hawkes process, which proves to be more accurate and efficient. Extensive experiments on both synthetic and real data demonstrate the superior effectiveness and efficiency of our method compared to baseline methods. Additionally, we conduct ablation studies to explore the robustness of our method concerning various hyperparameters. Our code is publicly available at https://github.com/Aurora2050/CoBay-CPD.
- Abstract(参考訳): ベイズ的2段階変化点検出法は,その単純さと直感性から,ホークス法で人気がある。
しかし、点過程の確率と先行との非共役性は、非共役推論法に依存するために既存のベイズ的2段階変化点検出方法のほとんどを必要とする。
これらの手法は解析的表現を欠き、計算効率の低下と時間的変化点検出の妨げとなる。
この問題に対処するために、この研究はデータ拡張を用いて、より正確かつ効率的なホークスプロセスのための共役ベイズ的2段階変化点検出法を提案する。
合成データと実データの両方に対する大規模な実験により,本手法の有効性と有効性を示した。
さらに,種々のハイパーパラメータに関する手法の頑健性を探るため,アブレーション研究を実施している。
私たちのコードはhttps://github.com/Aurora2050/CoBay-CPD.comで公開されています。
関連論文リスト
- Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment [81.84950252537618]
本稿では,反復的BONDと自己プレイアライメントの統一的なゲーム理論接続を明らかにする。
WINレート支配(WIN rate Dominance, WIND)という新しいフレームワークを構築し, 正規化利率支配最適化のためのアルゴリズムを多数提案する。
論文 参考訳(メタデータ) (2024-10-28T04:47:39Z) - Greedy online change point detection [0.0]
Greedy Online Change Point Detection (GOCPD) は、2つの独立したモデルの(時間的)連結から来るデータの確率を最大化することにより、変化点を求める計算上魅力的な方法である。
一つの変化点を持つ時系列の場合、この目的は不定意であり、対数複雑性を持つ3次探索によってCDDを高速化できることが示される。
論文 参考訳(メタデータ) (2023-08-14T08:59:59Z) - Fr\'echet Statistics Based Change Point Detection in Multivariate Hawkes
Process [17.72531431604197]
本稿では,Frechet統計を用いた因果ネットワークにおける変化点検出のための新しい手法を提案する。
提案手法は点過程を重なり合うウィンドウに分割し,各ウィンドウのカーネル行列を推定し,符号付きラプラシアンを再構成する。
論文 参考訳(メタデータ) (2023-08-13T13:46:38Z) - Nystrom Method for Accurate and Scalable Implicit Differentiation [25.29277451838466]
我々は,Nystrom法が他の手法と同等あるいは優れた性能を連続的に達成していることを示す。
提案手法は数値的な不安定さを回避し,反復を伴わない行列演算で効率的に計算できる。
論文 参考訳(メタデータ) (2023-02-20T02:37:26Z) - A Contrastive Approach to Online Change Point Detection [4.762323642506733]
オンライン変更点検出のための新しい手順を提案する。
提案手法は,変化前分布と変化後分布との差分尺度を最大化するものである。
術式の平均走行距離と検出遅延に対する非漸近的境界を証明した。
論文 参考訳(メタデータ) (2022-06-21T07:01:36Z) - On the efficiency of Stochastic Quasi-Newton Methods for Deep Learning [0.0]
深部記憶ネットワークのための準ニュートン学習アルゴリズムの動作について検討する。
準ニュートンは効率が良く、よく知られたAdamの1次実行よりも性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-05-18T20:53:58Z) - E-detectors: a nonparametric framework for sequential change detection [86.15115654324488]
逐次的変化検出のための基本的かつ汎用的なフレームワークを開発する。
私たちの手順は、平均走行距離のクリーンで無症状な境界が伴います。
統計的および計算効率の両方を達成するために,これらの混合物を設計する方法を示す。
論文 参考訳(メタデータ) (2022-03-07T17:25:02Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - SIMPLE: SIngle-network with Mimicking and Point Learning for Bottom-up
Human Pose Estimation [81.03485688525133]
Single-network with Mimicking and Point Learning for Bottom-up Human Pose Estimation (SIMPLE) を提案する。
具体的には、トレーニングプロセスにおいて、SIMPLEが高性能なトップダウンパイプラインからのポーズ知識を模倣できるようにする。
さらに、SIMPLEは人間検出とポーズ推定を統一的なポイントラーニングフレームワークとして定式化し、単一ネットワークで相互に補完する。
論文 参考訳(メタデータ) (2021-04-06T13:12:51Z) - Diverse Knowledge Distillation for End-to-End Person Search [81.4926655119318]
人物検索は、画像ギャラリーから特定の人物をローカライズし識別することを目的としている。
最近の手法は2つのグループ、すなわち2段階とエンドツーエンドのアプローチに分類できる。
ボトルネックを解消するために、多様な知識蒸留を備えたシンプルで強力なエンドツーエンドネットワークを提案します。
論文 参考訳(メタデータ) (2020-12-21T09:04:27Z) - Change Point Detection in Time Series Data using Autoencoders with a
Time-Invariant Representation [69.34035527763916]
変化点検出(CPD)は、時系列データにおける急激な特性変化を見つけることを目的としている。
近年のCDD法は、深層学習技術を用いる可能性を示したが、信号の自己相関統計学におけるより微妙な変化を識別する能力に欠けることが多い。
我々は、新しい損失関数を持つオートエンコーダに基づく手法を用い、使用済みオートエンコーダは、CDDに適した部分的な時間不変表現を学習する。
論文 参考訳(メタデータ) (2020-08-21T15:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。