DREAMS: A python framework for Training Deep Learning Models on EEG Data with Model Card Reporting for Medical Applications
- URL: http://arxiv.org/abs/2409.17815v2
- Date: Wed, 02 Jul 2025 10:08:46 GMT
- Title: DREAMS: A python framework for Training Deep Learning Models on EEG Data with Model Card Reporting for Medical Applications
- Authors: Rabindra Khadka, Pedro G Lind, Anis Yazidi, Asma Belhadi,
- Abstract summary: We introduce DREAMS, a Python-based framework designed to generate automated model cards for deep learning models applied to EEG data.<n>Unlike generic model reporting tools, DREAMS is specifically tailored for EEG-based deep learning applications.<n>The framework seamlessly integrates with deep learning pipelines, providing structured YAML-based documentation.
- Score: 7.2934799091933815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electroencephalography (EEG) provides a non-invasive way to observe brain activity in real time. Deep learning has enhanced EEG analysis, enabling meaningful pattern detection for clinical and research purposes. However, most existing frameworks for EEG data analysis are either focused on preprocessing techniques or deep learning model development, often overlooking the crucial need for structured documentation and model interpretability. In this paper, we introduce DREAMS (Deep REport for AI ModelS), a Python-based framework designed to generate automated model cards for deep learning models applied to EEG data. Unlike generic model reporting tools, DREAMS is specifically tailored for EEG-based deep learning applications, incorporating domain-specific metadata, preprocessing details, performance metrics, and uncertainty quantification. The framework seamlessly integrates with deep learning pipelines, providing structured YAML-based documentation. We evaluate DREAMS through two case studies: an EEG emotion classification task using the FACED dataset and a abnormal EEG classification task using the Temple Univeristy Hospital (TUH) Abnormal dataset. These evaluations demonstrate how the generated model card enhances transparency by documenting model performance, dataset biases, and interpretability limitations. Unlike existing model documentation approaches, DREAMS provides visualized performance metrics, dataset alignment details, and model uncertainty estimations, making it a valuable tool for researchers and clinicians working with EEG-based AI. The source code for DREAMS is open-source, facilitating broad adoption in healthcare AI, research, and ethical AI development.
Related papers
- PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDC is a machine-learning platform providing streamlined training, evaluation, and inference software for multimodal biological AI models.<n>This paper discusses the components of PyTDC's architecture and, to our knowledge, the first-of-its-kind case study on the introduced single-cell drug-target nomination ML task.
arXiv Detail & Related papers (2025-05-08T18:15:38Z) - Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
This study presents a comprehensive evaluation of radiomics-based and deep learning-based approaches for disease detection in chest radiography.
It focuses on COVID-19, lung opacity, and viral pneumonia.
The results aim to inform the integration of AI-driven diagnostic tools in clinical practice.
arXiv Detail & Related papers (2025-04-16T16:54:37Z) - Biomedical Foundation Model: A Survey [84.26268124754792]
Foundation models are large-scale pre-trained models that learn from extensive unlabeled datasets.
These models can be adapted to various applications such as question answering and visual understanding.
This survey explores the potential of foundation models across diverse domains within biomedical fields.
arXiv Detail & Related papers (2025-03-03T22:42:00Z) - Comprehensive Review of EEG-to-Output Research: Decoding Neural Signals into Images, Videos, and Audio [0.0]
Recent advancements in machine learning and generative modeling have catalyzed the application of EEG in reconstructing perceptual experiences.
This paper systematically reviews EEG-to-output research, focusing on state-of-the-art generative methods, evaluation metrics, and data challenges.
arXiv Detail & Related papers (2024-12-28T03:50:56Z) - Health AI Developer Foundations [18.690656891269686]
Health AI Developer Foundations (HAI-DEF) is a suite of pre-trained, domain-specific foundation models, tools, and recipes to accelerate building Machine Learning for health applications.
Models cover various modalities and domains, including radiology (X-rays and computed tomography), histopathology, dermatological imaging, and audio.
These models provide domain specific embeddings that facilitate AI development with less labeled data, shorter training times, and reduced computational costs.
arXiv Detail & Related papers (2024-11-22T18:51:51Z) - Explainable AI Methods for Multi-Omics Analysis: A Survey [3.885941688264509]
Multi-omics refers to the integrative analysis of data derived from multiple 'omes'
Deep learning methods are increasingly utilized to integrate multi-omics data, offering insights into molecular interactions and enhancing research into complex diseases.
These models, with their numerous interconnected layers and nonlinear relationships, often function as black boxes, lacking transparency in decision-making processes.
This review explores how xAI can improve the interpretability of deep learning models in multi-omics research, highlighting its potential to provide clinicians with clear insights.
arXiv Detail & Related papers (2024-10-15T05:01:17Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation [51.2289822267563]
We propose a method for generating synthetic datasets, given a small number of user-written few-shots that demonstrate the task to be performed.<n>We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks: biology, medicine, and commonsense question-answering (QA)<n>Our experiments show that CRAFT-based models outperform or match general LLMs on QA tasks, while exceeding models trained on human-curated summarization data by 46 preference points.
arXiv Detail & Related papers (2024-09-03T17:54:40Z) - Generative AI for Health Technology Assessment: Opportunities, Challenges, and Policy Considerations [12.73011921253]
This review introduces the transformative potential of generative Artificial Intelligence (AI) and foundation models, including large language models (LLMs), for health technology assessment (HTA)
We explore their applications in four critical areas, synthesis evidence, evidence generation, clinical trials and economic modeling.
Despite their promise, these technologies, while rapidly improving, are still nascent and continued careful evaluation in their applications to HTA is required.
arXiv Detail & Related papers (2024-07-09T09:25:27Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Automated Fusion of Multimodal Electronic Health Records for Better
Medical Predictions [48.0590120095748]
We propose a novel neural architecture search (NAS) framework named AutoFM, which can automatically search for the optimal model architectures for encoding diverse input modalities and fusion strategies.
We conduct thorough experiments on real-world multi-modal EHR data and prediction tasks, and the results demonstrate that our framework achieves significant performance improvement over existing state-of-the-art methods.
arXiv Detail & Related papers (2024-01-20T15:14:14Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
We present a novel EEG foundation model, namely EEGFormer, pretrained on large-scale compound EEG data.
To validate the effectiveness of our model, we extensively evaluate it on various downstream tasks and assess the performance under different transfer settings.
arXiv Detail & Related papers (2024-01-11T17:36:24Z) - SelfEEG: A Python library for Self-Supervised Learning in
Electroencephalography [0.0]
SelfEEG is an open-source Python library developed to assist researchers in conducting Self-Supervised Learning (SSL) experiments on electroencephalography (EEG) data.
Its primary objective is to offer a user-friendly but highly customizable environment, enabling users to efficiently design and execute self-supervised learning tasks on EEG data.
arXiv Detail & Related papers (2023-12-20T14:58:07Z) - Deployment of a Robust and Explainable Mortality Prediction Model: The
COVID-19 Pandemic and Beyond [0.59374762912328]
This study investigated the performance, explainability, and robustness of deployed artificial intelligence (AI) models in predicting mortality during the COVID-19 pandemic and beyond.
arXiv Detail & Related papers (2023-11-28T18:15:53Z) - Neuro-GPT: Towards A Foundation Model for EEG [0.04188114563181615]
We propose Neuro-GPT, a foundation model consisting of an EEG encoder and a GPT model.
Foundation model is pre-trained on a large-scale data set using a self-supervised task that learns how to reconstruct masked EEG segments.
Experiments demonstrate that applying a foundation model can significantly improve classification performance compared to a model trained from scratch.
arXiv Detail & Related papers (2023-11-07T07:07:18Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - Deep learning for temporal data representation in electronic health
records: A systematic review of challenges and methodologies [11.584972135829199]
Temporal electronic health records can be a wealth of information for secondary uses, such as clinical events prediction or chronic disease management.
We sought articles that reported deep learning methodologies on temporal data representation in structured EHR data from January 1, 2010, to August 30, 2020.
Four major challenges were identified, including data irregularity, data heterogeneity, data sparsity, and model opacity.
arXiv Detail & Related papers (2021-07-21T09:00:40Z) - BENDR: using transformers and a contrastive self-supervised learning
task to learn from massive amounts of EEG data [15.71234837305808]
We consider how to adapt techniques and architectures used for language modelling (LM) to encephalography modelling (EM)
We find that a single pre-trained model is capable of modelling completely novel raw EEG sequences recorded with differing hardware.
Both the internal representations of this model and the entire architecture can be fine-tuned to a variety of downstream BCI and EEG classification tasks.
arXiv Detail & Related papers (2021-01-28T14:54:01Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.