論文の概要: Sentiment Analysis of ML Projects: Bridging Emotional Intelligence and Code Quality
- arxiv url: http://arxiv.org/abs/2409.17885v1
- Date: Thu, 26 Sep 2024 14:34:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 17:47:25.938791
- Title: Sentiment Analysis of ML Projects: Bridging Emotional Intelligence and Code Quality
- Title(参考訳): MLプロジェクトの感性分析:ブリッジング感情インテリジェンスとコード品質
- Authors: Md Shoaib Ahmed, Dongyoung Park, Nasir U. Eisty,
- Abstract要約: 本研究では、機械学習(ML)プロジェクトにおける感情分析(SA)とコード品質の関係について検討する。
一般的なMLリポジトリの包括的なデータセットを統合することで、この分析はルールベース、機械学習、ハイブリッド感情分析の方法論をブレンドする。
開発者の肯定的な感情は、バグの減少とコードの臭いの発生率の低下によって表される優れたコード品質と強く結びついている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the intricate relationship between sentiment analysis (SA) and code quality within machine learning (ML) projects, illustrating how the emotional dynamics of developers affect the technical and functional attributes of software projects. Recognizing the vital role of developer sentiments, this research employs advanced sentiment analysis techniques to scrutinize affective states from textual interactions such as code comments, commit messages, and issue discussions within high-profile ML projects. By integrating a comprehensive dataset of popular ML repositories, this analysis applies a blend of rule-based, machine learning, and hybrid sentiment analysis methodologies to systematically quantify sentiment scores. The emotional valence expressed by developers is then correlated with a spectrum of code quality indicators, including the prevalence of bugs, vulnerabilities, security hotspots, code smells, and duplication instances. Findings from this study distinctly illustrate that positive sentiments among developers are strongly associated with superior code quality metrics manifested through reduced bugs and lower incidence of code smells. This relationship underscores the importance of fostering positive emotional environments to enhance productivity and code craftsmanship. Conversely, the analysis reveals that negative sentiments correlate with an uptick in code issues, particularly increased duplication and heightened security risks, pointing to the detrimental effects of adverse emotional conditions on project health.
- Abstract(参考訳): 本研究では、機械学習(ML)プロジェクトにおける感情分析(SA)とコード品質の複雑な関係について検討し、開発者の感情力学がソフトウェアプロジェクトの技術的・機能的特性にどのように影響するかを説明する。
本研究は、開発者の感情の重要な役割を認識し、高度な感情分析技術を用いて、コードコメント、コミットメッセージ、著名なMLプロジェクトにおける議論などのテキストインタラクションから感情状態を精査する。
一般的なMLリポジトリの包括的なデータセットを統合することで、この分析は、感情スコアを体系的に定量化するために、ルールベース、機械学習、ハイブリッド感情分析方法論の混合を適用する。
開発者によって表現される感情的価値は、バグ、脆弱性、セキュリティホットスポット、コードの臭い、重複インスタンスなど、コード品質指標のスペクトルと相関する。
この研究から明らかになったことは、開発者の肯定的な感情がバグの減少とコードの臭いの発生率の低下によって表される優れたコード品質指標と強く結びついていることを明確に示している。
この関係は、生産性とコードクラフトマンシップを高めるためにポジティブな感情環境を育むことの重要性を強調している。
逆に分析の結果、ネガティブな感情はコードの問題、特に重複の増加とセキュリティリスクの増大と相関していることが判明した。
関連論文リスト
- Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - Bridging LLM-Generated Code and Requirements: Reverse Generation technique and SBC Metric for Developer Insights [0.0]
本稿では,SBCスコアと呼ばれる新しいスコアリング機構を提案する。
これは、大規模言語モデルの自然言語生成能力を活用するリバースジェネレーション技術に基づいている。
直接コード解析とは異なり、我々のアプローチはAI生成コードからシステム要求を再構築し、元の仕様と比較する。
論文 参考訳(メタデータ) (2025-02-11T01:12:11Z) - ProSA: Assessing and Understanding the Prompt Sensitivity of LLMs [72.13489820420726]
ProSAは、大規模な言語モデルにおいて、迅速な感度を評価し、理解するために設計されたフレームワークである。
我々の研究は、データセットやモデル間で迅速に感度が変動することを発見し、より大きなモデルでは堅牢性が向上することを示した。
論文 参考訳(メタデータ) (2024-10-16T09:38:13Z) - GPT as Psychologist? Preliminary Evaluations for GPT-4V on Visual Affective Computing [74.68232970965595]
MLLM(Multimodal large language model)は、テキスト、音声、画像、ビデオなどの複数のソースからの情報を処理し、統合するように設計されている。
本稿では、視覚的情緒的タスクと推論タスクにまたがる5つの重要な能力を持つMLLMの適用性を評価する。
論文 参考訳(メタデータ) (2024-03-09T13:56:25Z) - Deep Imbalanced Learning for Multimodal Emotion Recognition in
Conversations [15.705757672984662]
会話におけるマルチモーダル感情認識(MERC)は、マシンインテリジェンスにとって重要な開発方向である。
MERCのデータの多くは自然に感情カテゴリーの不均衡な分布を示しており、研究者は感情認識に対する不均衡なデータの負の影響を無視している。
生データにおける感情カテゴリーの不均衡分布に対処するクラス境界拡張表現学習(CBERL)モデルを提案する。
我々は,IEMOCAPおよびMELDベンチマークデータセットの広範な実験を行い,CBERLが感情認識の有効性において一定の性能向上を達成したことを示す。
論文 参考訳(メタデータ) (2023-12-11T12:35:17Z) - How are Prompts Different in Terms of Sensitivity? [50.67313477651395]
本稿では,関数の感度に基づく包括的即時解析を提案する。
出力に対する入力トークンの関連性に異なるプロンプトがどう影響するかを実証的に示すために、勾配に基づく唾液度スコアを使用する。
本稿では, 感度推定をペナルティ項として組み込んだ感度認識復号法を標準グリーディ復号法で導入する。
論文 参考訳(メタデータ) (2023-11-13T10:52:01Z) - Static Code Analysis in the AI Era: An In-depth Exploration of the
Concept, Function, and Potential of Intelligent Code Analysis Agents [2.8686437689115363]
我々は、AIモデル、エンジニアリングプロセス設計、従来の非AIコンポーネントを組み合わせた新しい概念である、Intelligent Code Analysis Agent (ICAA)を紹介する。
我々は、バグ検出精度を大幅に改善し、偽陽性率は基準値の85%から66%まで減少し、60.8%の有望なリコール率を得た。
この課題にもかかわらず、ICAAはソフトウェアの品質保証に革命をもたらす可能性を示唆している。
論文 参考訳(メタデータ) (2023-10-13T03:16:58Z) - Understanding Self-Efficacy in the Context of Software Engineering: A
Qualitative Study in the Industry [2.268415020650315]
自己効力性(Self-Efficacy)は、様々な知識領域で研究され、パフォーマンス、満足度、モチベーションなどの様々な要因に影響を与える概念である。
本研究の目的は,自己効力感の行動徴候を理解することに集中して,ソフトウェア開発コンテキストへの影響を理解することである。
論文 参考訳(メタデータ) (2023-05-26T17:16:37Z) - CRITIC: Large Language Models Can Self-Correct with Tool-Interactive
Critiquing [139.77117915309023]
CRITICは、大規模な言語モデルに対して、ツールとのヒューマンインタラクションに似た方法で、自分たちのアウトプットの検証と修正を可能にする。
自由形式の質問応答、数学的プログラム合成、毒性低減を含む包括的評価は、CRITICがLLMの性能を一貫して向上することを証明している。
論文 参考訳(メタデータ) (2023-05-19T15:19:44Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - The Mind Is a Powerful Place: How Showing Code Comprehensibility Metrics
Influences Code Understanding [10.644832702859484]
ソースコードの理解度を示す指標が,ソースコードの理解度を主観的に評価する上で,開発者を悩ませるかどうかを検討する。
その結果、理解度測定値の表示値は、開発者のコード理解度評価に大きく、かつ大きなアンカー効果があることがわかった。
論文 参考訳(メタデータ) (2020-12-16T14:27:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。