論文の概要: Codesigned counterdiabatic quantum optimization on a photonic quantum processor
- arxiv url: http://arxiv.org/abs/2409.17930v1
- Date: Thu, 26 Sep 2024 15:08:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-28 17:03:54.322458
- Title: Codesigned counterdiabatic quantum optimization on a photonic quantum processor
- Title(参考訳): 光量子プロセッサにおける符号付き反断熱量子最適化
- Authors: Xiao-Wen Shang, Xuan Chen, Narendra N. Hegade, Ze-Feng Lan, Xuan-Kun Li, Hao Tang, Yu-Quan Peng, Enrique Solano, Xian-Min Jin,
- Abstract要約: 我々は,このアルゴリズムをフォトニック量子プロセッサ上で実装するための符号付きアプローチを用いて,逆断熱プロトコルに焦点を当てた。
我々は,高次多体相互作用項に対処して,最適化された反断熱的手法を開発し,実装する。
フォトニックプラットフォーム上での量子コンピューティングにおける反断熱量子力学の符号付きマッピングの利点を実験的に実証した。
- 参考スコア(独自算出の注目度): 6.079051215256144
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Codesign, an integral part of computer architecture referring to the information interaction in hardware-software stack, is able to boost the algorithm mapping and execution in the computer hardware. This well applies to the noisy intermediate-scale quantum era, where quantum algorithms and quantum processors both need to be shaped to allow for advantages in experimental implementations. The state-of-the-art quantum adiabatic optimization algorithm faces challenges for scaling up, where the deteriorating optimization performance is not necessarily alleviated by increasing the circuit depth given the noise in the hardware. The counterdiabatic term can be introduced to accelerate the convergence, but decomposing the unitary operator corresponding to the counterdiabatic terms into one and two-qubit gates may add additional burden to the digital circuit depth. In this work, we focus on the counterdiabatic protocol with a codesigned approach to implement this algorithm on a photonic quantum processor. The tunable Mach-Zehnder interferometer mesh provides rich programmable parameters for local and global manipulation, making it able to perform arbitrary unitary evolutions. Accordingly, we directly implement the unitary operation associated to the counterdiabatic quantum optimization on our processor without prior digitization. Furthermore, we develop and implement an optimized counterdiabatic method by tackling the higher-order many-body interaction terms. Moreover, we benchmark the performance in the case of factorization, by comparing the final success probability and the convergence speed. In conclusion, we experimentally demonstrate the advantages of a codesigned mapping of counterdiabatic quantum dynamics for quantum computing on photonic platforms.
- Abstract(参考訳): Codesignは、ハードウェアとソフトウェアスタックの情報相互作用を参照するコンピュータアーキテクチャの不可欠な部分であり、コンピュータハードウェアにおけるアルゴリズムマッピングと実行を促進することができる。
これは、量子アルゴリズムと量子プロセッサの両方を、実験的な実装で有利にするために形成する必要がある、うるさい中間スケールの量子の時代に当てはまる。
最先端の量子断熱最適化アルゴリズムは、ハードウェアのノイズに応じて回路深さを増大させることで、最適化性能の劣化が必ずしも軽減されるとは限らないため、スケールアップの課題に直面している。
反断続項は収束を加速するために導入することができるが、反断続項に対応するユニタリ演算子を1および2量子ゲートに分解することは、デジタル回路深さにさらなる負担を与える可能性がある。
本研究では,このアルゴリズムをフォトニック量子プロセッサに実装するための符号付きアプローチを用いて,逆ダイアバティックプロトコルに焦点を当てる。
調整可能なマッハ・ツェンダー干渉計メッシュは、局所的および大域的操作のための豊富なプログラム可能なパラメータを提供し、任意のユニタリ進化を行うことができる。
そこで我々は,従来のディジタル化を使わずに,プロセッサ上の反断熱量子最適化に関連するユニタリ演算を直接実装する。
さらに、高次多体相互作用項に対処して、最適化された対断的手法を開発し、実装する。
さらに、最終成功確率と収束速度を比較することにより、因子化の場合のパフォーマンスをベンチマークする。
結論として,フォトニックプラットフォーム上での量子コンピューティングにおける反断熱量子力学の符号付きマッピングの利点を実験的に実証した。
関連論文リスト
- Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
ハードウェアレベルフレームワークとしてパルスベースの変動量子最適化(PBVQO)を導入する。
量子干渉デバイス上での外部超伝導の最適化について説明する。
PBVQOとメタラーニングの相乗効果は、従来のゲートベースの変分アルゴリズムよりも有利である。
論文 参考訳(メタデータ) (2024-07-17T15:05:36Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
変分量子固有解法は、多くの応用に影響を及ぼすことのできる短期的アルゴリズムとして評価される。
収束性を改善するアルゴリズムや手法を見つけることは、VQEの短期ハードウェアの能力を加速するために重要である。
論文 参考訳(メタデータ) (2024-04-03T18:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
量子ゲート理論の基本的な前提は、量子ゲートはフォールトトレランスの誤差閾値を超えることなく、大きなプロセッサにスケールできるということである。
ここでは、このような問題を克服できる戦略について報告する。
我々は、68個の周波数可変ビットの周波数軌跡をコレオグラフィーして、超伝導エラー中に単一量子ビットを実行することを示した。
論文 参考訳(メタデータ) (2023-08-04T13:39:46Z) - Photonic counterdiabatic quantum optimization algorithm [3.2174634059872154]
連続変数問題に適した量子コンピューティングのためのハイブリッド量子近似最適化アルゴリズムを提案する。
我々は、光量子チップの原理実証実験を行う。
論文 参考訳(メタデータ) (2023-07-27T13:33:33Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial
Optimization [0.14755786263360526]
最小限のフォールトトレラント量子コンピュータで試すのに、最適化のための量子アルゴリズムが最も実用的であるかを探る。
この結果から,2次高速化のみを実現する量子最適化が,古典的アルゴリズムよりも有利であるという考えが否定される。
論文 参考訳(メタデータ) (2020-07-14T22:54:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。