論文の概要: Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering
- arxiv url: http://arxiv.org/abs/2409.00082v1
- Date: Sat, 24 Aug 2024 19:34:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:21:17.463009
- Title: Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering
- Title(参考訳): 複雑なプロセス・エンジニアリング・スキームのヒューマン・レベル理解に向けて--オープン・ドメイン質問応答のための教育的・イントロスペクティブ・マルチエージェント・フレームワーク
- Authors: Sagar Srinivas Sakhinana, Geethan Sannidhi, Venkataramana Runkana,
- Abstract要約: 化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance. Recent advancements in Generative AI, such as Large Multimodal Models (LMMs) like GPT4 (Omni), have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA). However, proprietary models pose data privacy risks, and their computational complexity prevents knowledge editing for domain-specific customization on consumer hardware. To overcome these challenges, we propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework for open-domain question answering (ODQA) tasks, offering enhanced data privacy, explainability, and cost-effectiveness. Our novel multi-agent framework employs introspective and specialized sub-agents using open-source, small-scale multimodal models with the ReAct (Reason+Act) prompting technique for PFD and P&ID analysis, integrating multiple information sources to provide accurate and contextually relevant answers. Our approach, supported by iterative self-correction, aims to deliver superior performance in ODQA tasks. We conducted rigorous experimental studies, and the empirical results validated the proposed approach effectiveness.
- Abstract(参考訳): 化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
GPT4(Omni)のようなLMM(Large Multimodal Models)のようなジェネレーティブAIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈において有望であることを示している。
しかし、プロプライエタリなモデルはデータプライバシのリスクを生じさせ、その計算複雑性は、消費者ハードウェアにおけるドメイン固有のカスタマイズのための知識編集を妨げる。
これらの課題を克服するために、オープンドメイン質問応答(ODQA)タスクのための階層的・マルチエージェント検索拡張生成(RAG)フレームワークを用いて、セキュアでオンプレミスなエンタープライズソリューションを提案し、データプライバシ、説明可能性、費用対効果を提供する。
我々の新しいマルチエージェントフレームワークは、PFDとP&ID分析のためのReAct(Reason+Act)プロンプト技術を用いたオープンソースの小型マルチモーダルモデルを用いて、イントロスペクティブで専門的なサブエージェントを採用し、複数の情報ソースを統合し、正確で文脈的に関係のある回答を提供する。
反復的自己補正によって支援された我々のアプローチは,ODQAタスクにおいて優れたパフォーマンスを実現することを目的としている。
厳密な実験を行い,提案手法の有効性を実証した。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Adaptive Stream Processing on Edge Devices through Active Inference [5.5676731834895765]
アクティブ推論(AIF)に基づく新しい機械学習パラダイムを提案する。
AIFは、脳が長期的サプライズを減らすために感覚情報を常に予測し、評価する方法を記述している。
本手法は意思決定の完全透明性を保証し,結果の解釈とトラブルシューティングを無力化する。
論文 参考訳(メタデータ) (2024-09-26T15:12:41Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
拡張コンテキストウィンドウを持つLong Language Model (LLM) は、情報抽出、質問応答、複雑な計画シナリオなどのタスクを大幅に改善した。
既存のメソッドは通常、Self-Instructフレームワークを使用して、長いコンテキスト能力を改善するために命令チューニングデータを生成する。
本稿では,品質検証エージェント,シングルホップ質問生成エージェント,複数質問サンプリング戦略,マルチホップ質問マーガーエージェントを組み込んだマルチエージェント対話型マルチホップ生成フレームワークを提案する。
以上の結果から,我々の合成高品位長文指導データにより,多量の人体で訓練したモデルよりも,モデル性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-03T13:30:00Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Multi-agent Planning using Visual Language Models [2.2369578015657954]
大規模言語モデル(LLM)とビジュアル言語モデル(VLM)は、様々なドメインやタスクにわたるパフォーマンスとアプリケーションの改善により、関心を集めている。
LLMとVLMは、特に問題領域の深い理解が必要な場合、誤った結果をもたらす。
本稿では,特定のデータ構造を入力として必要とせずに動作可能なマルチエージェント型タスクプランニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-08-10T08:10:17Z) - AtomAgents: Alloy design and discovery through physics-aware multi-modal multi-agent artificial intelligence [0.0]
提案されている物理対応生成AIプラットフォームAtomAgentsは、大規模言語モデル(LLM)のインテリジェンスをシナジする
以上の結果から, 合金間におけるキー特性の正確な予測が可能となり, 先進金属合金の開発を推し進めるためには, 固溶合金が重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-13T22:46:02Z) - PEER: Expertizing Domain-Specific Tasks with a Multi-Agent Framework and Tuning Methods [9.604121358026303]
GPT-4は大きな可能性を秘めているが、性能、コスト、データプライバシーの重大な三重項に直面している。
PEER(Plan, Execute, Express, Review)マルチエージェントフレームワークを紹介する。
これは、正確な質問分解、高度な情報検索、包括的な要約、厳密な自己評価を統合することで、ドメイン固有のタスクを体系化する。
論文 参考訳(メタデータ) (2024-07-09T15:59:28Z) - Multi-Agent VQA: Exploring Multi-Agent Foundation Models in Zero-Shot Visual Question Answering [48.7363941445826]
本稿では,オブジェクト検出とカウントにおける基礎モデルの限界を克服するために,Multi-Agent VQAという適応型マルチエージェントシステムを提案する。
ゼロショットシナリオで予備実験結果を示し、いくつかの障害事例を強調し、今後の研究の方向性を示す。
論文 参考訳(メタデータ) (2024-03-21T18:57:25Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
マルチモーダル推論は、人間のような知性を示す人工知能システムの追求において重要な要素である。
提案するマルチモーダル推論(COCO-MMR)データセットは,オープンエンド質問の集合を包含する新しいデータセットである。
画像とテキストエンコーダを強化するために,マルチホップ・クロスモーダル・アテンションや文レベルのコントラスト学習などの革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:58:25Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。