論文の概要: Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering
- arxiv url: http://arxiv.org/abs/2409.00082v1
- Date: Sat, 24 Aug 2024 19:34:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:21:17.463009
- Title: Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering
- Title(参考訳): 複雑なプロセス・エンジニアリング・スキームのヒューマン・レベル理解に向けて--オープン・ドメイン質問応答のための教育的・イントロスペクティブ・マルチエージェント・フレームワーク
- Authors: Sagar Srinivas Sakhinana, Geethan Sannidhi, Venkataramana Runkana,
- Abstract要約: 化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the chemical and process industries, Process Flow Diagrams (PFDs) and Piping and Instrumentation Diagrams (P&IDs) are critical for design, construction, and maintenance. Recent advancements in Generative AI, such as Large Multimodal Models (LMMs) like GPT4 (Omni), have shown promise in understanding and interpreting process diagrams for Visual Question Answering (VQA). However, proprietary models pose data privacy risks, and their computational complexity prevents knowledge editing for domain-specific customization on consumer hardware. To overcome these challenges, we propose a secure, on-premises enterprise solution using a hierarchical, multi-agent Retrieval Augmented Generation (RAG) framework for open-domain question answering (ODQA) tasks, offering enhanced data privacy, explainability, and cost-effectiveness. Our novel multi-agent framework employs introspective and specialized sub-agents using open-source, small-scale multimodal models with the ReAct (Reason+Act) prompting technique for PFD and P&ID analysis, integrating multiple information sources to provide accurate and contextually relevant answers. Our approach, supported by iterative self-correction, aims to deliver superior performance in ODQA tasks. We conducted rigorous experimental studies, and the empirical results validated the proposed approach effectiveness.
- Abstract(参考訳): 化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
GPT4(Omni)のようなLMM(Large Multimodal Models)のようなジェネレーティブAIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈において有望であることを示している。
しかし、プロプライエタリなモデルはデータプライバシのリスクを生じさせ、その計算複雑性は、消費者ハードウェアにおけるドメイン固有のカスタマイズのための知識編集を妨げる。
これらの課題を克服するために、オープンドメイン質問応答(ODQA)タスクのための階層的・マルチエージェント検索拡張生成(RAG)フレームワークを用いて、セキュアでオンプレミスなエンタープライズソリューションを提案し、データプライバシ、説明可能性、費用対効果を提供する。
我々の新しいマルチエージェントフレームワークは、PFDとP&ID分析のためのReAct(Reason+Act)プロンプト技術を用いたオープンソースの小型マルチモーダルモデルを用いて、イントロスペクティブで専門的なサブエージェントを採用し、複数の情報ソースを統合し、正確で文脈的に関係のある回答を提供する。
反復的自己補正によって支援された我々のアプローチは,ODQAタスクにおいて優れたパフォーマンスを実現することを目的としている。
厳密な実験を行い,提案手法の有効性を実証した。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Multi-Agent Actor-Critic Generative AI for Query Resolution and Analysis [1.0124625066746598]
本稿では,アクタ批判モデルに基づく問合せ解決のための変換フレームワークであるMASQRADを紹介する。
MASQRADは不正確または曖昧なユーザからの問い合わせを正確で行動可能な要求に翻訳するのに優れている。
MASQRAD は高度なマルチエージェントシステムとして機能するが、単一のAIエンティティとしてユーザに対して "masquerad" を提供する。
論文 参考訳(メタデータ) (2025-02-17T04:03:15Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
本研究の目的は,マルチエージェントサンプリングによるデータ合成の問題を調べることでギャップを埋めることである。
逐次サンプリングプロセス中にワークフローが反復的に進化する木探索に基づくオーケストレーションエージェント(TOA)を紹介する。
アライメント、機械翻訳、数学的推論に関する実験は、マルチエージェントサンプリングが推論計算スケールとしてシングルエージェントサンプリングを著しく上回ることを示した。
論文 参考訳(メタデータ) (2024-12-22T15:16:44Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
多段階多モーダル推論タスクは、大規模言語モデル(MLLM)に重大な課題をもたらす
本稿では,MLLMの推論能力の向上を目的とした汎用フレームワークAR-MCTSを提案する。
我々は,AR-MCTSがサンプリングの多様性と精度を最適化し,信頼性の高いマルチモーダル推論を実現することを示す。
論文 参考訳(メタデータ) (2024-12-19T13:25:39Z) - Agentic AI-Driven Technical Troubleshooting for Enterprise Systems: A Novel Weighted Retrieval-Augmented Generation Paradigm [0.0]
本稿では,企業の技術的トラブルシューティングに適したRAG(Weighted Retrieval-Augmented Generation)フレームワーク上に構築されたエージェントAIソリューションを提案する。
製品マニュアル、内部知識ベース、FAQ、トラブルシューティングガイドなどの検索ソースを動的に重み付けすることで、最も関連性の高いデータを優先順位付けする。
大規模エンタープライズデータセットに関する予備評価では、トラブルシューティングの精度を改善し、解決時間を短縮し、さまざまな技術的課題に適応する上で、フレームワークの有効性が示されている。
論文 参考訳(メタデータ) (2024-12-16T17:32:38Z) - Accelerating Manufacturing Scale-Up from Material Discovery Using Agentic Web Navigation and Retrieval-Augmented AI for Process Engineering Schematics Design [2.368662284133926]
プロセス・フロー・ダイアグラム(PFD)とプロセス・アンド・インスツルメンテーション・ダイアグラム(PID)は産業プロセスの設計、制御、安全性にとって重要なツールである。
精密かつ規則に準拠した図の作成は、特に自動化とデジタル化の時代において、材料発見から工業生産へのブレークスルーを拡大する上で、依然として重要な課題である。
本稿では,知識獲得と生成を伴う2段階のアプローチを通じて,これらの課題に対処する自律型エージェントフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-08T13:36:42Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
拡張コンテキストウィンドウを持つLong Language Model (LLM) は、情報抽出、質問応答、複雑な計画シナリオなどのタスクを大幅に改善した。
既存のメソッドは通常、Self-Instructフレームワークを使用して、長いコンテキスト能力を改善するために命令チューニングデータを生成する。
本稿では,品質検証エージェント,シングルホップ質問生成エージェント,複数質問サンプリング戦略,マルチホップ質問マーガーエージェントを組み込んだマルチエージェント対話型マルチホップ生成フレームワークを提案する。
以上の結果から,我々の合成高品位長文指導データにより,多量の人体で訓練したモデルよりも,モデル性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-09-03T13:30:00Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
マルチモーダル推論は、人間のような知性を示す人工知能システムの追求において重要な要素である。
提案するマルチモーダル推論(COCO-MMR)データセットは,オープンエンド質問の集合を包含する新しいデータセットである。
画像とテキストエンコーダを強化するために,マルチホップ・クロスモーダル・アテンションや文レベルのコントラスト学習などの革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:58:25Z) - Multi-Agent Reinforcement Learning for Microprocessor Design Space
Exploration [71.95914457415624]
マイクロプロセッサアーキテクトは、高性能でエネルギー効率の追求において、ドメイン固有のカスタマイズにますます頼っている。
この問題に対処するために,Multi-Agent RL (MARL) を利用した別の定式化を提案する。
評価の結果,MARLの定式化は単エージェントRLのベースラインよりも一貫して優れていた。
論文 参考訳(メタデータ) (2022-11-29T17:10:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。