Atomic-scale on-demand photon polarization manipulation with high-efficiency for integrated photonic chips
- URL: http://arxiv.org/abs/2409.17947v1
- Date: Thu, 26 Sep 2024 15:21:04 GMT
- Title: Atomic-scale on-demand photon polarization manipulation with high-efficiency for integrated photonic chips
- Authors: Yunning Lu, Zeyang Liao, Xue-hua Wang,
- Abstract summary: We propose a scheme to realize arbitrary polarization manipulation of a single photon by integrating a single quantum emitter in a photonic waveguide.
The proposed polarization converter has several advantages, including arbitrary polarization conversion for any input polarization, tunable working frequency, excellent anti-dissipation ability with high conversion efficiency, and atomic-scale size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In order to overcome the challenge of lacking polarization encoding in integrated quantum photonic circuits, we propose a scheme to realize arbitrary polarization manipulation of a single photon by integrating a single quantum emitter in a photonic waveguide. In our scheme, one transition path of the three-level emitter is designed to simultaneously couples with two orthogonal polarization degenerate modes in the waveguide with adjustable coupling strengths, and the other transition path of the three-level emitter is driven by an external coherent field. The proposed polarization converter has several advantages, including arbitrary polarization conversion for any input polarization, tunable working frequency, excellent anti-dissipation ability with high conversion efficiency, and atomic-scale size. Our work provides an effective solution to enable the polarization encoding of photons which can be applied in the integrated quantum photonic circuits, and will boost quantum photonic chip.
Related papers
- Polarization-entangled photon pairs generation from a single lithium niobate waveguide with single poling period [7.30580496740769]
We propose a simple and efficient scheme to generate polarization-entangled photon pairs based on type-0 SPDC.
By utilizing the strong dispersion engineering capabilities of thin-film waveguides, we can achieve both degenerate and highly detuned entangled photon pairs.
arXiv Detail & Related papers (2024-10-30T08:08:51Z) - Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Quantum dots as optimized chiral emitters for photonic integrated
circuits [0.0]
We present a theoretical analysis in which we propose to optimize the polarization of a QD emitter against the spatially averaged directionality.
Our results present a viable path for efficient chiral coupling in QD-based photonic integrated circuits.
arXiv Detail & Related papers (2023-10-13T17:10:22Z) - Polarization-selective enhancement of telecom wavelength quantum dot
transitions in an elliptical bullseye resonator [0.0]
We show broadband polarization-selective enhancement by coupling a quantum dot to an elliptical bullseye resonator.
We report bright single-photon emission with a degree of linear polarization of 96%, Purcell factor of 3.9, and count rates up to 3 MHz.
Results represent an important step towards practical integration of optimal quantum dot photon sources in deployment-ready setups.
arXiv Detail & Related papers (2023-09-12T11:23:32Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Single photon emission from individual nanophotonic-integrated colloidal
quantum dots [45.82374977939355]
Solution processible colloidal quantum dots hold great promise for realizing single-photon sources embedded into scalable quantum technology platforms.
We report on integrating individual colloidal core-shell quantum dots into a nanophotonic network that allows for excitation and efficient collection of single-photons via separate waveguide channels.
arXiv Detail & Related papers (2021-04-23T22:14:17Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z) - Resonance fluorescence from waveguide-coupled strain-localized
two-dimensional quantum emitters [0.0]
We show a scalable approach using a silicon nitride photonic waveguide to strain-localize single-photon emitters from a tungsten diselenide (WSe2) monolayer and to couple them into a waveguide mode.
Our results are an important step to enable coherent control of quantum states and multiplexing of high-quality single photons in a scalable photonic quantum circuit.
arXiv Detail & Related papers (2020-02-18T15:45:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.