論文の概要: PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
- arxiv url: http://arxiv.org/abs/2410.01337v1
- Date: Wed, 2 Oct 2024 08:54:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:39:21.809794
- Title: PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
- Title(参考訳): PhyMPGN:時空間PDEシステムのための物理符号化メッセージパッシンググラフネットワーク
- Authors: Bocheng Zeng, Qi Wang, Mengtao Yan, Yang Liu, Ruizhi Chengze, Yi Zhang, Hongsheng Liu, Zidong Wang, Hao Sun,
- Abstract要約: 我々は物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)という新しいグラフ学習手法を提案する。
我々は,GNNを数値積分器に組み込んで,与えられたPDEシステムに対する時間的時間的ダイナミクスの時間的行進を近似する。
PhyMPGNは、粗い非構造メッシュ上での様々なタイプの時間的ダイナミクスを正確に予測することができる。
- 参考スコア(独自算出の注目度): 31.006807854698376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving partial differential equations (PDEs) serves as a cornerstone for modeling complex dynamical systems. Recent progresses have demonstrated grand benefits of data-driven neural-based models for predicting spatiotemporal dynamics (e.g., tremendous speedup gain compared with classical numerical methods). However, most existing neural models rely on rich training data, have limited extrapolation and generalization abilities, and suffer to produce precise or reliable physical prediction under intricate conditions (e.g., irregular mesh or geometry, complex boundary conditions, diverse PDE parameters, etc.). To this end, we propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN), to model spatiotemporal PDE systems on irregular meshes given small training datasets. Specifically, we incorporate a GNN into a numerical integrator to approximate the temporal marching of spatiotemporal dynamics for a given PDE system. Considering that many physical phenomena are governed by diffusion processes, we further design a learnable Laplace block, which encodes the discrete Laplace-Beltrami operator, to aid and guide the GNN learning in a physically feasible solution space. A boundary condition padding strategy is also designed to improve the model convergence and accuracy. Extensive experiments demonstrate that PhyMPGN is capable of accurately predicting various types of spatiotemporal dynamics on coarse unstructured meshes, consistently achieves the state-of-the-art results, and outperforms other baselines with considerable gains.
- Abstract(参考訳): 偏微分方程式(PDE)の解法は、複雑な力学系をモデル化するための基礎となる。
近年の進歩は、時空間力学(例えば、古典的な数値法と比較して驚くほどのスピードアップゲイン)を予測するために、データ駆動型ニューラルネットワークモデルの大きな利点を示している。
しかし、既存のほとんどのニューラルネットワークモデルは、リッチなトレーニングデータに依存しており、外挿と一般化能力が限られており、複雑な条件(例えば、不規則メッシュや幾何学、複雑な境界条件、多様なPDEパラメータなど)の下で正確で信頼性の高い物理予測が得られない。
そこで本研究では,物理符号化されたメッセージパッシンググラフネットワーク(PhyMPGN)というグラフ学習手法を提案する。
具体的には、GNNを数値積分器に組み込んで、与えられたPDE系に対する時空間力学の時間的行進を近似する。
多くの物理現象が拡散過程によって制御されていることを考慮し、離散的なラプラス・ベルトラミ演算子を符号化した学習可能なラプラスブロックを設計し、GNN学習を物理的に実現可能な解空間で支援し指導する。
また、モデル収束性と精度を向上させるために境界条件パディング戦略も設計されている。
大規模な実験により、PhyMPGNは粗い非構造メッシュ上での様々な時空間ダイナミクスを正確に予測し、一貫して最先端の結果を達成し、他のベースラインをかなり上回ることを示した。
関連論文リスト
- Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
物理シミュレーションに潜時拡散モデルを適用する方法をいくつか紹介する。
提案手法は、現在のニューラルPDEソルバと、精度と効率の両面で競合することを示す。
スケーラブルで正確で使用可能な物理シミュレータを導入することで、ニューラルPDEソルバを実用化に近づけたいと思っています。
論文 参考訳(メタデータ) (2024-10-02T01:09:47Z) - Spatiotemporal Learning on Cell-embedded Graphs [6.8090864965073274]
学習可能なセル属性をノードエッジメッセージパッシングプロセスに導入し,地域特性の空間依存性をよりよく把握する。
各種PDEシステムと1つの実世界のデータセットの実験は、CeGNNが他のベースラインモデルと比較して優れた性能を発揮することを示した。
論文 参考訳(メタデータ) (2024-09-26T16:22:08Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
気候予測は、流体シミュレーションにおける全ての乱流スケールを解決するために、微細な時間分解能を必要とする。
現在の数値モデル解法 PDEs on grids that too coarse (3km~200km on each side)
本研究では,空間的位置問合せが与えられたPDEの空間的連続解を予測する新しいアーキテクチャを設計する。
論文 参考訳(メタデータ) (2022-10-11T14:52:20Z) - Physics-Embedded Neural Networks: Graph Neural PDE Solvers with Mixed
Boundary Conditions [3.04585143845864]
グラフニューラルネットワーク(GNN)は、物理現象を学習し予測するための有望なアプローチである。
本稿では, 境界条件を考慮し, 長い時間経過後に状態を予測できる物理埋め込み型GNNを提案する。
我々のモデルは、信頼性、高速かつ正確なGNNベースのPDEソルバを実現するための有用な標準となり得る。
論文 参考訳(メタデータ) (2022-05-24T09:17:27Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。