論文の概要: GrEmLIn: A Repository of Green Baseline Embeddings for 87 Low-Resource Languages Injected with Multilingual Graph Knowledge
- arxiv url: http://arxiv.org/abs/2409.18193v2
- Date: Wed, 11 Dec 2024 10:13:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-12 13:59:25.522861
- Title: GrEmLIn: A Repository of Green Baseline Embeddings for 87 Low-Resource Languages Injected with Multilingual Graph Knowledge
- Title(参考訳): GrEmLIn:多言語グラフによる87の低リソース言語に対するグリーンベースライン埋め込みのリポジトリ
- Authors: Daniil Gurgurov, Rishu Kumar, Simon Ostermann,
- Abstract要約: GrEmLInは、87の中間および低リソース言語に対して、グリーンで静的なベースライン埋め込みのリポジトリである。
我々はGrEmLIn埋め込みを多言語グラフ知識を統合することでGloVe埋め込みを強化する新しい手法で計算する。
実験により、GrEmLIn の埋め込みは、語彙的類似性のタスクにおいて、E5 からの最先端の文脈的埋め込みよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 0.6317163123651698
- License:
- Abstract: Contextualized embeddings based on large language models (LLMs) are available for various languages, but their coverage is often limited for lower resourced languages. Using LLMs for such languages is often difficult due to a high computational cost; not only during training, but also during inference. Static word embeddings are much more resource-efficient ("green"), and thus still provide value, particularly for very low-resource languages. There is, however, a notable lack of comprehensive repositories with such embeddings for diverse languages. To address this gap, we present GrEmLIn, a centralized repository of green, static baseline embeddings for 87 mid- and low-resource languages. We compute GrEmLIn embeddings with a novel method that enhances GloVe embeddings by integrating multilingual graph knowledge, which makes our static embeddings competitive with LLM representations, while being parameter-free at inference time. Our experiments demonstrate that GrEmLIn embeddings outperform state-of-the-art contextualized embeddings from E5 on the task of lexical similarity. They remain competitive in extrinsic evaluation tasks like sentiment analysis and natural language inference, with average performance gaps of just 5-10\% or less compared to state-of-the-art models, given a sufficient vocabulary overlap with the target task, and underperform only on topic classification. Our code and embeddings are publicly available at https://huggingface.co/DFKI.
- Abstract(参考訳): 大規模言語モデル(LLM)に基づくコンテキスト適応型埋め込みは様々な言語で利用可能であるが、その範囲は低リソース言語に限られることが多い。
このような言語にLSMを使うことは、訓練中だけでなく、推論中も高い計算コストで困難であることが多い。
静的な単語の埋め込みは、よりリソース効率が良い("green")ので、特に低リソース言語では、依然として価値を提供する。
しかし、様々な言語にそのような埋め込みを組み込んだ包括的なリポジトリが欠如している。
このギャップに対処するため、87の中間および低リソース言語に対して、グリーンで静的なベースライン埋め込みの集中リポジトリであるGrEmLInを提示する。
我々はGrEmLIn埋め込みを多言語グラフ知識を統合することでGloVe埋め込みを向上させる新しい手法で計算する。
実験の結果,GrEmLInの埋め込みは,語彙的類似性に基づくE5からの文脈的埋め込みよりも優れていた。
感情分析や自然言語推論のような外在的評価タスクでは競争力があり、平均的なパフォーマンスギャップは最先端のモデルに比べてわずか5~10 %以下であり、目的のタスクと十分な語彙が重なり、トピック分類でのみ性能が劣る。
私たちのコードと埋め込みはhttps://huggingface.co/DFKI.comで公開されています。
関連論文リスト
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - Enhancing Cross-lingual Sentence Embedding for Low-resource Languages with Word Alignment [13.997006139875563]
低リソース言語における言語間単語表現は、特に現在のモデルにおける高リソース言語における単語表現と一致していない。
そこで本研究では,既製の単語アライメントモデルを用いて,英語と低リソース言語8言語間の単語アライメントを明確にする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-03T05:58:53Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
我々は、事前訓練された大規模言語モデル(LLM)が、アンダーリソース言語のパフォーマンスギャップを埋める可能性について検討する。
LLM は,低リソース言語における技術の現状を,かなりのマージンで容易に設定できることがわかった。
全ての言語について、人間の評価は最高のシステムで人間と同等のパフォーマンスを示すが、BLEUのスコアは英語に比べて崩壊する。
論文 参考訳(メタデータ) (2024-02-19T16:29:40Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - MoSECroT: Model Stitching with Static Word Embeddings for Crosslingual Zero-shot Transfer [50.40191599304911]
クロスリンガルゼロショット転送のための静的単語埋め込みを用いたMoSECroTモデルスティッチについて紹介する。
本稿では,ソースコードPLMの埋め込みと対象言語の静的単語埋め込みのための共通空間を構築するために,相対表現を利用した最初のフレームワークを提案する。
提案するフレームワークは,MoSECroTに対処する際,弱いベースラインと競合するが,強いベースラインに比べて競合する結果が得られないことを示す。
論文 参考訳(メタデータ) (2024-01-09T21:09:07Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Isomorphic Cross-lingual Embeddings for Low-Resource Languages [1.5076964620370268]
CLWE(Cross-Lingual Word Embeddings)は、高リソース設定から学習した言語情報を低リソースに転送するための重要なコンポーネントである。
我々は、関連の高い高リソース言語を共同で活用することで、低リソース対に対して、アイソメトリを仮定せずにCLWEを学習するフレームワークを導入する。
両言語レキシコン誘導(BLI)と固有値類似度(Eigenvalue similarity)によって測定された同型性の品質と程度において,現在の手法よりも一貫した利得を示す。
論文 参考訳(メタデータ) (2022-03-28T10:39:07Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。