論文の概要: Privacy-Aware RAG: Secure and Isolated Knowledge Retrieval
- arxiv url: http://arxiv.org/abs/2503.15548v1
- Date: Mon, 17 Mar 2025 07:45:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-21 16:35:00.879601
- Title: Privacy-Aware RAG: Secure and Isolated Knowledge Retrieval
- Title(参考訳): プライバシを意識したRAG - セキュアで分離された知識検索
- Authors: Pengcheng Zhou, Yinglun Feng, Zhongliang Yang,
- Abstract要約: 本稿では,RAGシステムを不正アクセスやデータ漏洩から保護するための高度な暗号化手法を提案する。
当社のアプローチでは、ストレージに先立ってテキストコンテンツとそれに対応する埋め込みの両方を暗号化し、すべてのデータがセキュアに暗号化されていることを保証します。
以上の結果から,RAGシステムの設計と展開に高度な暗号化技術を統合することにより,プライバシー保護を効果的に強化できることが示唆された。
- 参考スコア(独自算出の注目度): 7.412110686946628
- License:
- Abstract: The widespread adoption of Retrieval-Augmented Generation (RAG) systems in real-world applications has heightened concerns about the confidentiality and integrity of their proprietary knowledge bases. These knowledge bases, which play a critical role in enhancing the generative capabilities of Large Language Models (LLMs), are increasingly vulnerable to breaches that could compromise sensitive information. To address these challenges, this paper proposes an advanced encryption methodology designed to protect RAG systems from unauthorized access and data leakage. Our approach encrypts both textual content and its corresponding embeddings prior to storage, ensuring that all data remains securely encrypted. This mechanism restricts access to authorized entities with the appropriate decryption keys, thereby significantly reducing the risk of unintended data exposure. Furthermore, we demonstrate that our encryption strategy preserves the performance and functionality of RAG pipelines, ensuring compatibility across diverse domains and applications. To validate the robustness of our method, we provide comprehensive security proofs that highlight its resilience against potential threats and vulnerabilities. These proofs also reveal limitations in existing approaches, which often lack robustness, adaptability, or reliance on open-source models. Our findings suggest that integrating advanced encryption techniques into the design and deployment of RAG systems can effectively enhance privacy safeguards. This research contributes to the ongoing discourse on improving security measures for AI-driven services and advocates for stricter data protection standards within RAG architectures.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) システムが現実世界のアプリケーションに広く採用されていることにより、プロプライエタリな知識基盤の機密性や完全性に対する懸念が高まっている。
これらの知識ベースは、LLM(Large Language Models)の生成能力を高める上で重要な役割を担います。
これらの課題に対処するために,RAGシステムを不正アクセスやデータ漏洩から守るための高度な暗号化手法を提案する。
当社のアプローチでは、ストレージに先立ってテキストコンテンツとそれに対応する埋め込みの両方を暗号化し、すべてのデータがセキュアに暗号化されていることを保証します。
このメカニズムは、適切な復号鍵による認証されたエンティティへのアクセスを制限し、意図しないデータ露出のリスクを著しく低減する。
さらに、当社の暗号化戦略は、RAGパイプラインの性能と機能を維持し、さまざまなドメインやアプリケーション間の互換性を確保することを実証しています。
本手法の堅牢性を検証するため,潜在的な脅威や脆弱性に対するレジリエンスを強調する総合的なセキュリティ証明を提供する。
これらの証明は、しばしばロバスト性、適応性、あるいはオープンソースモデルへの依存を欠いている既存のアプローチの制限を明らかにしている。
以上の結果から,RAGシステムの設計と展開に高度な暗号化技術を統合することにより,プライバシー保護を効果的に強化できることが示唆された。
この研究は、AI駆動サービスのセキュリティ対策の改善に関する継続的な議論に寄与し、RAGアーキテクチャ内のより厳格なデータ保護標準を提唱する。
関連論文リスト
- Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Distributed Identity for Zero Trust and Segmented Access Control: A Novel Approach to Securing Network Infrastructure [4.169915659794567]
本研究は、分散IDをZTA原則で適用した際のセキュリティ改善を評価する。
この研究は、分散IDを採用することで、全体的なセキュリティ姿勢を桁違いに向上させることができることを示唆している。
この研究は、技術的標準の洗練、分散IDの実践的利用の拡大、および現代のデジタルセキュリティ分野への応用を推奨している。
論文 参考訳(メタデータ) (2025-01-14T00:02:02Z) - TrustRAG: Enhancing Robustness and Trustworthiness in RAG [31.231916859341865]
TrustRAGは、世代ごとに取得される前に、妥協されたコンテンツと無関係なコンテンツを体系的にフィルタリングするフレームワークである。
TrustRAGは、既存のアプローチと比較して、検索精度、効率、攻撃抵抗を大幅に改善している。
論文 参考訳(メタデータ) (2025-01-01T15:57:34Z) - Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
認証サイクル冗長性チェック(ACRIC)を提案する。
ACRICは、追加のハードウェアを必要とせずに後方互換性を保持し、プロトコルに依存しない。
ACRICは最小送信オーバーヘッド(1ms)で堅牢なセキュリティを提供する。
論文 参考訳(メタデータ) (2024-11-21T18:26:05Z) - FRAG: Toward Federated Vector Database Management for Collaborative and Secure Retrieval-Augmented Generation [1.3824176915623292]
本稿では,検索集約システム (RAG) のニーズの増大に対応する新しいデータベース管理パラダイムである textitFederated Retrieval-Augmented Generation (FRAG) を紹介する。
FRAGは、ANN(Approximate $k$-Nearest Neighbor)による、暗号化されたクエリベクタと分散ベクトルデータベースに格納された暗号化データ検索を相互に行うことができる。
論文 参考訳(メタデータ) (2024-10-17T06:57:29Z) - Towards Secure and Private AI: A Framework for Decentralized Inference [14.526663289437584]
大規模マルチモーダル基盤モデルは、スケーラビリティ、信頼性、潜在的な誤用に関する課題を提示する。
分散システムは、ワークロードの分散と障害の中心的なポイントの緩和によるソリューションを提供する。
これらの課題に対処するためには、AI開発に責任を負うように設計された包括的なフレームワークを使います。
論文 参考訳(メタデータ) (2024-07-28T05:09:17Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation [0.9217021281095907]
本稿では,RAGシステムに対して,メンバーシップ推論攻撃(MIA)を行うための効率的かつ使いやすい手法を提案する。
2つのベンチマークデータセットと複数の生成モデルを用いて攻撃の有効性を示す。
本研究は,RAGシステムにおけるセキュリティ対策の実施の重要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-05-30T19:46:36Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Online Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation [79.89605349842569]
オンラインプロパティのコレクション・リファインメント(CROP)フレームワークをトレーニング時にプロパティを設計するために導入する。
CROPは、安全でない相互作用を識別し、安全特性を形成するためにコストシグナルを使用する。
本手法をいくつかのロボットマップレスナビゲーションタスクで評価し,CROPで計算した違反量によって,従来のSafe DRL手法よりも高いリターンと低いリターンが得られることを示す。
論文 参考訳(メタデータ) (2023-02-13T21:19:36Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。