論文の概要: Powering LLM Regulation through Data: Bridging the Gap from Compute Thresholds to Customer Experiences
- arxiv url: http://arxiv.org/abs/2502.03472v1
- Date: Sun, 12 Jan 2025 16:20:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-09 05:47:08.056983
- Title: Powering LLM Regulation through Data: Bridging the Gap from Compute Thresholds to Customer Experiences
- Title(参考訳): データによるLCM規制の強化 - コンピュータの閾値から顧客エクスペリエンスへのギャップを埋める
- Authors: Wesley Pasfield,
- Abstract要約: 本稿では,計算レベルのしきい値と一般化モデル評価に着目した現在の規制手法は,特定のLCMベースのユーザエクスペリエンスの安全性と有効性を保証するには不十分である,と論じる。
本稿では,ユーザによる実際の体験と評価のための高品質データセットのキュレーションを中心とした認定プロセスへの移行を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The rapid advancement of Large Language Models (LLMs) has created a critical gap in consumer protection due to the lack of standardized certification processes for LLM-powered Artificial Intelligence (AI) systems. This paper argues that current regulatory approaches, which focus on compute-level thresholds and generalized model evaluations, are insufficient to ensure the safety and effectiveness of specific LLM-based user experiences. We propose a shift towards a certification process centered on actual user-facing experiences and the curation of high-quality datasets for evaluation. This approach offers several benefits: it drives consumer confidence in AI system performance, enables businesses to demonstrate the credibility of their products, and allows regulators to focus on direct consumer protection. The paper outlines a potential certification workflow, emphasizing the importance of domain-specific datasets and expert evaluation. By repositioning data as the strategic center of regulatory efforts, this framework aims to address the challenges posed by the probabilistic nature of AI systems and the rapid pace of technological advancement. This shift in regulatory focus has the potential to foster innovation while ensuring responsible AI development, ultimately benefiting consumers, businesses, and government entities alike.
- Abstract(参考訳): LLM(Large Language Models)の急速な進歩は、LLM駆動人工知能(AI)システムの標準化された認証プロセスの欠如により、消費者保護において重要なギャップを生み出している。
本稿では,計算レベルのしきい値と一般化モデル評価に着目した現在の規制手法は,特定のLCMベースのユーザエクスペリエンスの安全性と有効性を保証するには不十分である,と論じる。
本稿では,ユーザによる実際の体験と評価のための高品質データセットのキュレーションを中心とした認定プロセスへの移行を提案する。
このアプローチは、AIシステムのパフォーマンスに対する消費者の信頼を促進し、企業が製品の信頼性を実証し、規制当局が直接消費者保護に集中できるようにする、といういくつかの利点を提供する。
論文では、ドメイン固有のデータセットと専門家評価の重要性を強調し、潜在的な認定ワークフローの概要を述べる。
この枠組みは、AIシステムの確率的性質と急速な技術進歩によって引き起こされる課題に対処することを目的としている。
この規制の焦点のシフトは、AI開発の責任を負いながらイノベーションを育む可能性があり、最終的には消費者、企業、政府機関にも利益をもたらす。
関連論文リスト
- Evaluating Cultural and Social Awareness of LLM Web Agents [113.49968423990616]
CASAは,大規模言語モデルの文化的・社会的規範に対する感受性を評価するためのベンチマークである。
提案手法は,標準に違反するユーザクエリや観察を検知し,適切に応答するLLMエージェントの能力を評価する。
実験により、現在のLLMは非エージェント環境で大幅に性能が向上していることが示された。
論文 参考訳(メタデータ) (2024-10-30T17:35:44Z) - Smart Audit System Empowered by LLM [25.2545519709246]
大規模言語モデル(LLM)を利用したスマート監査システムを提案する。
提案手法では,監査手順を効率化する動的リスクアセスメントモデル,データ処理,検索,評価を強化する製造コンプライアンスコミッション,リアルタイムにカスタマイズされた分析を提供するRe-actフレームワークの共通性分析エージェントの3つの革新を紹介した。
これらの改善により、監査効率と効率が向上し、テストシナリオでは24%以上の改善が示されている。
論文 参考訳(メタデータ) (2024-10-10T07:36:15Z) - Trustworthy AI: Securing Sensitive Data in Large Language Models [0.0]
大規模言語モデル(LLM)は、堅牢なテキスト生成と理解を可能にすることで自然言語処理(NLP)を変革した。
本稿では, 機密情報の開示を動的に制御するために, 信頼機構をLCMに組み込むための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-26T19:02:33Z) - VERA: Validation and Evaluation of Retrieval-Augmented Systems [5.709401805125129]
VERAは、大規模言語モデル(LLM)からの出力の透明性と信頼性を高めるために設計されたフレームワークである。
VERAが意思決定プロセスを強化し、AIアプリケーションへの信頼を高める方法を示す。
論文 参考訳(メタデータ) (2024-08-16T21:59:59Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
TRACE と呼ばれるコントラスト埋め込みを用いた新しいTRansformer-based Attribution フレームワークを提案する。
TRACEは情報源の属性を精度良く改善し,大規模言語モデルの信頼性と信頼性を高める貴重なツールであることを示す。
論文 参考訳(メタデータ) (2024-07-06T07:19:30Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
AgentBoardは、インクリメンタルな進歩と包括的な評価ツールキットをキャプチャする、きめ細かい進捗率のメトリクスを提供する。
これはLLMエージェントの能力と限界に光を当てるだけでなく、その性能の解釈可能性も最前線に広める。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - RAISE -- Radiology AI Safety, an End-to-end lifecycle approach [5.829180249228172]
放射線学へのAIの統合は、臨床ケアの供給と効率を改善する機会をもたらす。
モデルが安全性、有効性、有効性の最高基準を満たすことに注力すべきである。
ここで提示されるロードマップは、放射線学におけるデプロイ可能で信頼性があり、安全なAIの達成を早めることを目的としている。
論文 参考訳(メタデータ) (2023-11-24T15:59:14Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - Towards Integrating Fairness Transparently in Industrial Applications [3.478469381434812]
本稿では,機械学習プロジェクトのバイアス検出,緩和,ドキュメント化において,機械的および人為的コンポーネントを統合するための体系的アプローチを提案する。
構造的プリミティブを実世界のユースケースの例として提示し、潜在的なバイアスを特定し、適切な緩和戦略を決定する方法について説明する。
論文 参考訳(メタデータ) (2020-06-10T21:54:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。