Development and Validation of a Dynamic-Template-Constrained Large Language Model for Generating Fully-Structured Radiology Reports
- URL: http://arxiv.org/abs/2409.18319v2
- Date: Fri, 25 Oct 2024 03:17:24 GMT
- Title: Development and Validation of a Dynamic-Template-Constrained Large Language Model for Generating Fully-Structured Radiology Reports
- Authors: Chuang Niu, Parisa Kaviani, Qing Lyu, Mannudeep K. Kalra, Christopher T. Whitlow, Ge Wang,
- Abstract summary: Current LLMs for creating fully-structured reports face the challenges of formatting errors, content hallucinations, and privacy leakage issues when uploading data to external servers.
We aim to develop an open-source, accurate LLM for creating fully-structured and standardized LCS reports from varying free-text reports across institutions.
- Score: 9.504087246178221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current LLMs for creating fully-structured reports face the challenges of formatting errors, content hallucinations, and privacy leakage issues when uploading data to external servers.We aim to develop an open-source, accurate LLM for creating fully-structured and standardized LCS reports from varying free-text reports across institutions and demonstrate its utility in automatic statistical analysis and individual lung nodule retrieval. With IRB approvals, our retrospective study included 5,442 de-identified LDCT LCS radiology reports from two institutions. We constructed two evaluation datasets by labeling 500 pairs of free-text and fully-structured radiology reports and one large-scale consecutive dataset from January 2021 to December 2023. Two radiologists created a standardized template for recording 27 lung nodule features on LCS. We designed a dynamic-template-constrained decoding method to enhance existing LLMs for creating fully-structured reports from free-text radiology reports. Using consecutive structured reports, we automated descriptive statistical analyses and a nodule retrieval prototype. Our best LLM for creating fully-structured reports achieved high performance on cross-institutional datasets with an F1 score of about 97%, with neither formatting errors nor content hallucinations. Our method consistently improved the best open-source LLMs by up to 10.42%, and outperformed GPT-4o by 17.19%. The automatically derived statistical distributions were consistent with prior findings regarding attenuation, location, size, stability, and Lung-RADS. The retrieval system with structured reports allowed flexible nodule-level search and complex statistical analysis. Our developed software is publicly available for local deployment and further research.
Related papers
- Improving Radiology Report Conciseness and Structure via Local Large Language Models [0.0]
We aim to enhance radiology reporting by improving the conciseness and structured organization of findings.
This structured approach allows physicians to locate relevant information quickly, increasing the report's utility.
We utilize Large Language Models (LLMs) such as Mixtral, Mistral, and Llama to generate concise, well-structured reports.
arXiv Detail & Related papers (2024-11-06T19:00:57Z) - Language Models and Retrieval Augmented Generation for Automated Structured Data Extraction from Diagnostic Reports [2.932283627137903]
The study utilized two datasets: 7,294 radiology reports annotated for Brain Tumor Reporting and Data System (BT-RADS) scores and 2,154 pathology reports for isocitrate dehydrogenase (IDH) mutation status.
arXiv Detail & Related papers (2024-09-15T15:21:45Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - DictLLM: Harnessing Key-Value Data Structures with Large Language Models
for Enhanced Medical Diagnostics [36.057925881268226]
DictLLM is an innovative framework designed to improve the modeling of key-value structured data, like medical laboratory reports, for generating medical diagnoses.
We carry out experiments using various LLM models on a comprehensive real-world medical laboratory report dataset for automatic diagnosis generation.
arXiv Detail & Related papers (2024-02-18T07:10:02Z) - Beyond Traditional Benchmarks: Analyzing Behaviors of Open LLMs on Data-to-Text Generation [0.0]
We analyze the behaviors of open large language models (LLMs) on the task of data-to-text (D2T) generation.
We find that open LLMs can generate fluent and coherent texts in zero-shot settings from data in common formats collected with Quintd.
arXiv Detail & Related papers (2024-01-18T18:15:46Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
Tabular data is often hidden in text, particularly in medical diagnostic reports.
We propose a novel, simple, and effective methodology for extracting structured tabular data from textual medical reports, called TEMED-LLM.
We demonstrate that our approach significantly outperforms state-of-the-art text classification models in medical diagnostics.
arXiv Detail & Related papers (2023-06-08T09:12:28Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
The 'Impression' section of a radiology report is a critical basis for communication between radiologists and other physicians.
Recent studies have achieved promising results in automatic impression generation using large-scale medical text data.
These models often require substantial amounts of medical text data and have poor generalization performance.
arXiv Detail & Related papers (2023-04-17T17:13:42Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
Abstractive summarization has enjoyed renewed interest in recent years, thanks to pre-trained language models and the availability of large-scale datasets.
Despite promising results, current models still suffer from generating factually inconsistent summaries.
We leverage factual consistency evaluation models to improve multilingual summarization.
arXiv Detail & Related papers (2022-12-20T19:52:41Z) - Medical Scientific Table-to-Text Generation with Human-in-the-Loop under
the Data Sparsity Constraint [11.720364723821993]
An efficient tableto-text summarization system can drastically reduce manual efforts to condense this data into reports.
However, in practice, the problem is heavily impeded by the data paucity, data sparsity and inability of the state-of-the-art natural language generation models to produce accurate and reliable outputs.
We propose a novel table-to-text approach and tackle these problems with a novel two-step architecture which is enhanced by auto-correction, copy mechanism and synthetic data augmentation.
arXiv Detail & Related papers (2022-05-24T21:10:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.